File size: 6,531 Bytes
3d1f2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import sys
import glob
import json
import torch
import numpy as np

from torchvision.transforms import v2
from torch.utils.data import Dataset
from PIL import Image

from utils.utils_lines import LineKeypointsDB
from utils.utils_linesWC import LineKeypointsWCDB



class SoccerNetCalibrationDataset(Dataset):

    def __init__(self, root_dir, split, transform, main_cam_only=True):

        self.root_dir = root_dir
        self.split = split
        self.transform = transform

        #self.match_info = json.load(open(root_dir + split + '/match_info.json'))
        self.files = glob.glob(os.path.join(self.root_dir + self.split, "*.jpg"))

        if main_cam_only:
            self.get_main_camera()


    def __len__(self):
        return len(self.files)

    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()

        img_name = self.files[idx]
        image = Image.open(img_name)
        data = json.load(open(img_name.split('.')[0] + ".json"))
        sample = self.transform({'image': image, 'data': data})

        img_db = LineKeypointsDB(sample['data'], sample['image'])
        target = img_db.get_tensor()

        return sample['image'], torch.from_numpy(target).float()

    def get_main_camera(self):
        self.files = [file for file in self.files if int(self.match_info[file.split('/')[-1]]['ms_time']) == \
                      int(self.match_info[file.split('/')[-1]]['replay_time'])]


class WorldCup2014Dataset(Dataset):

    def __init__(self, root_dir, split, transform):
        self.root_dir = root_dir
        self.split = split
        self.transform = transform
        assert self.split in ['train_val', 'test'], f'unknown dataset type {self.split}'

        self.files = glob.glob(os.path.join(self.root_dir + self.split, "*.jpg"))
        self.homographies = glob.glob(os.path.join(self.root_dir + self.split, "*.homographyMatrix"))
        self.num_samples = len(self.files)

        self.files.sort()
        self.homographies.sort()

    def __len__(self):
        return self.num_samples

    def __getitem__(self, idx):
        image = self.get_image_by_index(idx)
        homography = self.get_homography_by_index(idx)
        img_db = LineKeypointsWCDB(image, homography, (960,540))
        target, mask = img_db.get_tensor_w_mask()

        sample = self.transform({'image': image, 'target': target, 'mask': mask})

        return sample['image'], sample['target'], sample['mask']

    def convert_homography_WC14GT_to_SN(self, H):
        T = np.eye(3)
        #T[0, -1] = -115 / 2
        #T[1, -1] = -74 / 2
        yard2meter = 0.9144
        S = np.eye(3)
        S[0, 0] = yard2meter
        S[1, 1] = yard2meter
        H_SN = S @ (T @ H)

        return H_SN

    def get_image_by_index(self, index):
        img_file = self.files[index]
        image = Image.open(img_file)
        return image

    def get_homography_by_index(self, index):
        homography_file = self.homographies[index]
        with open(homography_file, 'r') as file:
            lines = file.readlines()
            matrix_elements = []
            for line in lines:
                matrix_elements.extend([float(element) for element in line.split()])
        homography = np.array(matrix_elements).reshape((3, 3))
        homography = self.convert_homography_WC14GT_to_SN(homography)
        homography = torch.from_numpy(homography)
        homography = homography / homography[2:3, 2:3]
        return homography



class TSWorldCupDataset(Dataset):

    def __init__(self, root_dir, split, transform):
        self.root_dir = root_dir
        self.split = split
        self.transform = transform
        assert self.split in ['train', 'test'], f'unknown dataset type {self.split}'

        self.files_txt = self.get_txt()

        self.files = self.get_jpg_files()
        self.homographies = self.get_homographies()
        self.num_samples = len(self.files)

        self.files.sort()
        self.homographies.sort()

    def __len__(self):
        return self.num_samples

    def __getitem__(self, idx):
        image = self.get_image_by_index(idx)
        homography = self.get_homography_by_index(idx)
        img_db = LineKeypointsWCDB(image, homography, (960,540))
        target, mask = img_db.get_tensor_w_mask()

        sample = self.transform({'image': image, 'target': target, 'mask': mask})

        return sample['image'], sample['target'], sample['mask']


    def get_txt(self):
        with open(self.root_dir + self.split + '.txt', 'r') as file:
            lines = file.readlines()
        lines = [line.strip() for line in lines]
        return lines

    def get_jpg_files(self):
        all_jpg_files = []
        for dir in self.files_txt:
            full_dir = self.root_dir + "Dataset/80_95/" + dir
            jpg_files = []
            for file in os.listdir(full_dir):
                if file.lower().endswith('.jpg') or file.lower().endswith('.jpeg'):
                    jpg_files.append(os.path.join(full_dir, file))

            all_jpg_files.extend(jpg_files)

        return all_jpg_files

    def get_homographies(self):
        all_homographies = []
        for dir in self.files_txt:
            full_dir = self.root_dir + "Annotations/80_95/" + dir
            homographies = []
            for file in os.listdir(full_dir):
                if file.lower().endswith('.npy'):
                    homographies.append(os.path.join(full_dir, file))

            all_homographies.extend(homographies)

        return all_homographies


    def convert_homography_WC14GT_to_SN(self, H):
        T = np.eye(3)
        #T[0, -1] = -115 / 2
        #T[1, -1] = -74 / 2
        yard2meter = 0.9144
        S = np.eye(3)
        S[0, 0] = yard2meter
        S[1, 1] = yard2meter
        H_SN = S @ (T @ H)

        return H_SN

    def get_image_by_index(self, index):
        img_file = self.files[index]
        image = Image.open(img_file)
        return image

    def get_homography_by_index(self, index):
        homography_file = self.homographies[index]
        homography = np.load(homography_file)
        homography = self.convert_homography_WC14GT_to_SN(homography)
        homography = torch.from_numpy(homography)
        homography = homography / homography[2:3, 2:3]
        return homography