File size: 12,046 Bytes
3d1f2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import cv2
import yaml
import torch
import argparse
import numpy as np
import matplotlib.pyplot as plt
import torchvision.transforms as T
import torchvision.transforms.functional as f
from tqdm import tqdm
from PIL import Image
from matplotlib.patches import Polygon
from model.cls_hrnet import get_cls_net
from model.cls_hrnet_l import get_cls_net as get_cls_net_l
from utils.utils_calib import FramebyFrameCalib, pan_tilt_roll_to_orientation
from utils.utils_heatmap import get_keypoints_from_heatmap_batch_maxpool, get_keypoints_from_heatmap_batch_maxpool_l, \
complete_keypoints, coords_to_dict
lines_coords = [[[0., 54.16, 0.], [16.5, 54.16, 0.]],
[[16.5, 13.84, 0.], [16.5, 54.16, 0.]],
[[16.5, 13.84, 0.], [0., 13.84, 0.]],
[[88.5, 54.16, 0.], [105., 54.16, 0.]],
[[88.5, 13.84, 0.], [88.5, 54.16, 0.]],
[[88.5, 13.84, 0.], [105., 13.84, 0.]],
[[0., 37.66, -2.44], [0., 30.34, -2.44]],
[[0., 37.66, 0.], [0., 37.66, -2.44]],
[[0., 30.34, 0.], [0., 30.34, -2.44]],
[[105., 37.66, -2.44], [105., 30.34, -2.44]],
[[105., 30.34, 0.], [105., 30.34, -2.44]],
[[105., 37.66, 0.], [105., 37.66, -2.44]],
[[52.5, 0., 0.], [52.5, 68, 0.]],
[[0., 68., 0.], [105., 68., 0.]],
[[0., 0., 0.], [0., 68., 0.]],
[[105., 0., 0.], [105., 68., 0.]],
[[0., 0., 0.], [105., 0., 0.]],
[[0., 43.16, 0.], [5.5, 43.16, 0.]],
[[5.5, 43.16, 0.], [5.5, 24.84, 0.]],
[[5.5, 24.84, 0.], [0., 24.84, 0.]],
[[99.5, 43.16, 0.], [105., 43.16, 0.]],
[[99.5, 43.16, 0.], [99.5, 24.84, 0.]],
[[99.5, 24.84, 0.], [105., 24.84, 0.]]]
def projection_from_cam_params(final_params_dict):
cam_params = final_params_dict["cam_params"]
x_focal_length = cam_params['x_focal_length']
y_focal_length = cam_params['y_focal_length']
principal_point = np.array(cam_params['principal_point'])
position_meters = np.array(cam_params['position_meters'])
rotation = np.array(cam_params['rotation_matrix'])
It = np.eye(4)[:-1]
It[:, -1] = -position_meters
Q = np.array([[x_focal_length, 0, principal_point[0]],
[0, y_focal_length, principal_point[1]],
[0, 0, 1]])
P = Q @ (rotation @ It)
return P
def inference(cam, frame, model, model_l, kp_threshold, line_threshold, pnl_refine):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frame = f.to_tensor(frame).float().unsqueeze(0)
_, _, h_original, w_original = frame.size()
frame = frame if frame.size()[-1] == 960 else transform2(frame)
frame = frame.to(device)
b, c, h, w = frame.size()
with torch.no_grad():
heatmaps = model(frame)
heatmaps_l = model_l(frame)
kp_coords = get_keypoints_from_heatmap_batch_maxpool(heatmaps[:,:-1,:,:])
# print("\n"*4,"kp_coords: ", kp_coords)
line_coords = get_keypoints_from_heatmap_batch_maxpool_l(heatmaps_l[:,:-1,:,:])
print("\n"*4,"line_coords_from_heatmap: ", line_coords)
kp_dict = coords_to_dict(kp_coords, threshold=kp_threshold)
lines_dict = coords_to_dict(line_coords, threshold=line_threshold)
# print("\n=== AVANT complete_keypoints ===")
# print("--- KEYPOINTS ---")
# print(f"Nombre de keypoints: {len(kp_dict[0])}")
# print("Structure des keypoints:")
for kp_key, kp_value in kp_dict[0].items():
print(f"{kp_key}: {kp_value}")
# print("\n--- LIGNES ---")
# print(f"Nombre de lignes: {len(lines_dict[0])}")
# print("Structure des lignes:")
for line_key, line_value in lines_dict[0].items():
print(f"{line_key}: {line_value}")
kp_dict, lines_dict = complete_keypoints(kp_dict[0], lines_dict[0], w=w, h=h, normalize=True)
# print("\n=== APRÈS complete_keypoints ===")
# print("--- KEYPOINTS ---")
# print(f"Nombre de keypoints: {len(kp_dict)}")
# print("Structure des keypoints:")
for kp_key, kp_value in kp_dict.items():
print(f"{kp_key}: {kp_value}")
# print("\n--- LIGNES ---")
# print(f"Nombre de lignes: {len(lines_dict)}")
# print("Structure des lignes:")
for line_key, line_value in lines_dict.items():
print(f"{line_key}: {line_value}")
cam.update(kp_dict, lines_dict)
final_params_dict = cam.heuristic_voting(refine_lines=pnl_refine)
return final_params_dict
def project(frame, P):
for line in lines_coords:
w1 = line[0]
w2 = line[1]
i1 = P @ np.array([w1[0]-105/2, w1[1]-68/2, w1[2], 1])
i2 = P @ np.array([w2[0]-105/2, w2[1]-68/2, w2[2], 1])
i1 /= i1[-1]
i2 /= i2[-1]
frame = cv2.line(frame, (int(i1[0]), int(i1[1])), (int(i2[0]), int(i2[1])), (255, 0, 0), 3)
r = 9.15
pts1, pts2, pts3 = [], [], []
base_pos = np.array([11-105/2, 68/2-68/2, 0., 0.])
for ang in np.linspace(37, 143, 50):
ang = np.deg2rad(ang)
pos = base_pos + np.array([r*np.sin(ang), r*np.cos(ang), 0., 1.])
ipos = P @ pos
ipos /= ipos[-1]
pts1.append([ipos[0], ipos[1]])
base_pos = np.array([94-105/2, 68/2-68/2, 0., 0.])
for ang in np.linspace(217, 323, 200):
ang = np.deg2rad(ang)
pos = base_pos + np.array([r*np.sin(ang), r*np.cos(ang), 0., 1.])
ipos = P @ pos
ipos /= ipos[-1]
pts2.append([ipos[0], ipos[1]])
base_pos = np.array([0, 0, 0., 0.])
for ang in np.linspace(0, 360, 500):
ang = np.deg2rad(ang)
pos = base_pos + np.array([r*np.sin(ang), r*np.cos(ang), 0., 1.])
ipos = P @ pos
ipos /= ipos[-1]
pts3.append([ipos[0], ipos[1]])
XEllipse1 = np.array(pts1, np.int32)
XEllipse2 = np.array(pts2, np.int32)
XEllipse3 = np.array(pts3, np.int32)
frame = cv2.polylines(frame, [XEllipse1], False, (255, 0, 0), 3)
frame = cv2.polylines(frame, [XEllipse2], False, (255, 0, 0), 3)
frame = cv2.polylines(frame, [XEllipse3], False, (255, 0, 0), 3)
return frame
def process_input(input_path, input_type, model_kp, model_line, kp_threshold, line_threshold, pnl_refine,
save_path, display):
cap = cv2.VideoCapture(input_path)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
cam = FramebyFrameCalib(iwidth=frame_width, iheight=frame_height, denormalize=True)
if input_type == 'video':
cap = cv2.VideoCapture(input_path)
if save_path != "":
out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
pbar = tqdm(total=total_frames)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
final_params_dict = inference(cam, frame, model, model_l, kp_threshold, line_threshold, pnl_refine)
if final_params_dict is not None:
P = projection_from_cam_params(final_params_dict)
projected_frame = project(frame, P)
else:
projected_frame = frame
if save_path != "":
out.write(projected_frame)
if display:
cv2.imshow('Projected Frame', projected_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
pbar.update(1)
cap.release()
if save_path != "":
out.release()
cv2.destroyAllWindows()
elif input_type == 'image':
frame = cv2.imread(input_path)
if frame is None:
print(f"Error: Unable to read the image {input_path}")
return
final_params_dict = inference(cam, frame, model, model_l, kp_threshold, line_threshold, pnl_refine)
print("\n"*4,"final_params_dict: ", final_params_dict)
if final_params_dict is not None:
P = projection_from_cam_params(final_params_dict)
projected_frame = project(frame, P)
else:
projected_frame = frame
if save_path != "":
cv2.imwrite(save_path, projected_frame)
else:
plt.imshow(cv2.cvtColor(projected_frame, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process video or image and plot lines on each frame.")
parser.add_argument("--weights_kp", type=str, help="Path to the model for keypoint inference.")
parser.add_argument("--weights_line", type=str, help="Path to the model for line projection.")
parser.add_argument("--kp_threshold", type=float, default=0.3434, help="Threshold for keypoint detection.")
parser.add_argument("--line_threshold", type=float, default=0.7867, help="Threshold for line detection.")
parser.add_argument("--pnl_refine", action="store_true", help="Enable PnL refinement module.")
parser.add_argument("--device", type=str, default="cuda:0", help="CPU or CUDA device index")
parser.add_argument("--input_path", type=str, required=True, help="Path to the input video or image file.")
parser.add_argument("--input_type", type=str, choices=['video', 'image'], required=True,
help="Type of input: 'video' or 'image'.")
parser.add_argument("--save_path", type=str, default="", help="Path to save the processed video.")
parser.add_argument("--display", action="store_true", help="Enable real-time display.")
args = parser.parse_args()
input_path = args.input_path
input_type = args.input_type
model_kp = args.weights_kp
model_line = args.weights_line
pnl_refine = args.pnl_refine
save_path = args.save_path
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
display = args.display and input_type == 'video'
kp_threshold = args.kp_threshold
line_threshold = args.line_threshold
cfg = yaml.safe_load(open("config/hrnetv2_w48.yaml", 'r'))
cfg_l = yaml.safe_load(open("config/hrnetv2_w48_l.yaml", 'r'))
loaded_state = torch.load(args.weights_kp, map_location=device, weights_only=True)
model = get_cls_net(cfg)
model.load_state_dict(loaded_state)
model.to(device)
model.eval()
loaded_state_l = torch.load(args.weights_line, map_location=device, weights_only=True)
model_l = get_cls_net_l(cfg_l)
model_l.load_state_dict(loaded_state_l)
model_l.to(device)
model_l.eval()
transform2 = T.Resize((540, 960))
process_input(input_path, input_type, model_kp, model_line, kp_threshold, line_threshold, pnl_refine,
save_path, display)
# python inference.py --weights_kp "models/SV_FT_TSWC_kp" --weights_line "models/SV_FT_TSWC_lines" --input_path "examples/input/FootDrone.mp4" --input_type "video" --save_path "examples/output/video.mp4" --kp_threshold 0.15 --line_threshold 0.15 --pnl_refine
# python inference.py --weights_kp "SV_FT_TSWC_kp" --weights_line "SV_FT_TSWC_lines" --input_path "examples/input/FootDrone.jpg" --input_type "image" --save_path "examples/output/FootDrone_inf.jpg" --kp_threshold 0.15 --line_threshold 0.15
# python inference.py --weights_kp "models/SV_FT_TSWC_kp" --weights_line "models/SV_FT_TSWC_lines" --input_path "examples/input/fisheye_messi.png" --input_type "image" --save_path "examples/output/fisheye_messi_inf.png" --kp_threshold 0.15 --line_threshold 0.15 |