1inkusFace's picture
Update app.py
47667c4 verified
import subprocess
subprocess.run(['sh', './spaces.sh'])
import os
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
alloc_conf_parts = [
'expandable_segments:True',
'pinned_use_background_threads:True' # Specific to pinned memory.
]
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
import spaces
import gradio as gr
import numpy as np
import random
import torch
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from transformers import CLIPTextModelWithProjection, T5EncoderModel
from transformers import CLIPTokenizer, T5TokenizerFast
import re
import paramiko
import urllib
import time
from image_gen_aux import UpscaleWithModel
from huggingface_hub import hf_hub_download
import datetime
import cyper
from PIL import Image
#from accelerate import Accelerator
#accelerator = Accelerator(mixed_precision="bf16")
hftoken = os.getenv("HF_AUTH_TOKEN")
code = r'''
import torch
import paramiko
import os
import socket
import threading # NEW IMPORT
import queue # NEW IMPORT
FTP_HOST = 'noahcohn.com'
FTP_USER = 'ford442'
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = 'img.noahcohn.com/stablediff/'
FTP_HOST_FALLBACK = '1ink.us'
FTP_DIR_FALLBACK = 'img.1ink.us/stablediff/'
# --- WORKER FUNCTION FOR THREADING ---
# This function contains the logic to connect to a single host.
# It will be executed by each of our threads.
def connect_worker(host, result_queue):
"""Tries to connect to a single host and puts the successful transport object into the queue."""
transport = None
try:
transport = paramiko.Transport((host, 22))
# We still use the 5-second timeout for the handshake
transport.start_client(timeout=5)
transport.auth_password(username=FTP_USER, password=FTP_PASS)
# If we reach here, the connection was successful.
# Put the result in the queue for the main thread to use.
print(f"✅ Connection to {host} succeeded first.")
result_queue.put(transport)
except (paramiko.SSHException, socket.timeout, EOFError) as e:
# This is an expected failure, just print a note.
print(f"ℹ️ Connection to {host} failed or was too slow: {e}")
if transport:
transport.close()
except Exception as e:
# Handle any other unexpected errors.
print(f"❌ Unexpected error connecting to {host}: {e}")
if transport:
transport.close()
def upload_to_ftp(filename):
"""
Attempts to connect to two FTP hosts simultaneously and uses the first one that responds.
It now uses a corresponding directory for the primary and fallback hosts.
"""
hosts = [FTP_HOST]
if FTP_HOST_FALLBACK:
hosts.append(FTP_HOST_FALLBACK)
result_queue = queue.Queue()
threads = []
print(f"--> Racing connections to {hosts} for uploading {filename}...")
for host in hosts:
thread = threading.Thread(target=connect_worker, args=(host, result_queue))
thread.daemon = True
thread.start()
threads.append(thread)
try:
winning_transport = result_queue.get(timeout=7)
# --- THIS IS THE NEW LOGIC ---
# 1. Determine which host won the race.
winning_host = winning_transport.getpeername()[0]
# 2. Select the correct destination directory based on the winning host.
# If the fallback directory isn't specified, it safely defaults to the primary directory.
if winning_host == FTP_HOST:
destination_directory = FTP_DIR
else:
destination_directory = FTP_DIR_FALLBACK if FTP_DIR_FALLBACK else FTP_DIR
print(f"--> Proceeding with upload to {winning_host} in directory {destination_directory}...")
# 3. Construct the full destination path using the selected directory.
sftp = paramiko.SFTPClient.from_transport(winning_transport)
destination_path = os.path.join(destination_directory, os.path.basename(filename))
sftp.put(filename, destination_path)
print(f"✅ Successfully uploaded {filename}.")
sftp.close()
winning_transport.close()
except queue.Empty:
print("❌ Critical Error: Neither FTP host responded in time.")
except Exception as e:
print(f"❌ An unexpected error occurred during SFTP operation: {e}")
'''
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
pipe = StableDiffusion3Pipeline.from_pretrained(
#"stabilityai # stable-diffusion-3.5-large",
"ford442/stable-diffusion-3.5-large-bf16",
trust_remote_code=True,
#vae=None,
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
#text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
#text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
#text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
transformer=None,
#tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=False, use_fast=True, subfolder="tokenizer_3", token=True),
#torch_dtype=torch.bfloat16,
use_safetensors=True,
)
#text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
#text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
#text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
pipe.transformer=ll_transformer
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
#pipe.to(accelerator.device)
pipe.to(device=device, dtype=torch.bfloat16)
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cuda'))
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
@spaces.GPU(duration=70)
def infer_60(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd35ll_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35ll_upscale_{timestamp}.png"
downscale.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
@spaces.GPU(duration=100)
def infer_90(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd35ll_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35ll_upscale_{timestamp}.png"
downscale.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
@spaces.GPU(duration=120)
def infer_110(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
print('-- generating image --')
sd_image = pipe(
prompt=prompt,
prompt_2=prompt,
prompt_3=prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd35_path = f"sd35ll_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(sd35_path)
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35ll_upscale_{timestamp}.png"
downscale.save(upscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(upscale_path)
return sd_image, prompt
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) # Add this line
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_60 = gr.Button("Run 60", scale=0, variant="primary")
run_button_90 = gr.Button("Run 90", scale=0, variant="primary")
run_button_110 = gr.Button("Run 110", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt_1 = gr.Text(
label="Negative prompt 1",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a second negative prompt",
visible=True,
value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)"
)
negative_prompt_3 = gr.Text(
label="Negative prompt 3",
max_lines=1,
placeholder="Enter a third negative prompt",
visible=True,
value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)"
)
num_iterations = gr.Number(
value=1000,
label="Number of Iterations")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=30.0,
step=0.1,
value=4.2,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=500,
step=1,
value=100,
)
gr.on(
triggers=[run_button_60.click, prompt.submit],
fn=infer_60,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_90.click, prompt.submit],
fn=infer_90,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
gr.on(
triggers=[run_button_110.click, prompt.submit],
fn=infer_110,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch()