|
import spaces |
|
import torch |
|
import os |
|
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel |
|
from transformers import T5EncoderModel |
|
from diffusers.utils import export_to_video |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from PIL import Image |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False |
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False |
|
torch.backends.cudnn.allow_tf32 = False |
|
torch.backends.cudnn.deterministic = False |
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
torch.set_float32_matmul_precision("highest") |
|
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1") |
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
os.environ["SAFETENSORS_FAST_GPU"] = "1" |
|
MAX_SEED = np.iinfo(np.int64).max |
|
|
|
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-2b-0.9.6-distilled-04-25.safetensors" |
|
|
|
|
|
|
|
|
|
pipe = LTXImageToVideoPipeline.from_pretrained( |
|
"Lightricks/LTX-Video", |
|
token=HF_TOKEN, |
|
transformer=None, |
|
text_encoder=None, |
|
).to(torch.device("cuda"),torch.bfloat16) |
|
|
|
text_encoder = T5EncoderModel.from_pretrained("Lightricks/LTX-Video",subfolder='text_encoder',token=True).to(torch.device("cuda"),torch.bfloat16) |
|
transformer = LTXVideoTransformer3DModel.from_single_file(single_file_url,token=HF_TOKEN).to(torch.device("cuda"),torch.bfloat16) |
|
|
|
@spaces.GPU(duration=80) |
|
def generate_video( |
|
image_url, |
|
prompt, |
|
negative_prompt, |
|
width, |
|
height, |
|
num_frames, |
|
guidance_scale, |
|
num_inference_steps, |
|
fps, |
|
progress=gr.Progress(track_tqdm=True) |
|
): |
|
pipe.text_encoder=text_encoder |
|
pipe.transformer=transformer |
|
seed=random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
image = Image.open(image_url).convert("RGB") |
|
image.resize((height,width), Image.LANCZOS) |
|
video = pipe( |
|
image=image, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
num_frames=num_frames, |
|
frame_rate=fps, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
num_inference_steps=num_inference_steps, |
|
output_type='pt', |
|
max_sequence_length=512, |
|
).frames |
|
video = video[0] |
|
video = video.permute(0, 2, 3, 1).cpu().detach().to(torch.float32).numpy() |
|
export_to_video(video, "output.mp4", fps=fps) |
|
return "output.mp4" |
|
|
|
iface = gr.Interface( |
|
fn=generate_video, |
|
inputs=[ |
|
gr.Image(type="filepath", label="Image"), |
|
gr.Textbox(lines=2, label="Prompt"), |
|
gr.Textbox(lines=2, label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted"), |
|
gr.Slider(minimum=256, maximum=1024, step=8, value=704, label="Width"), |
|
gr.Slider(minimum=256, maximum=1024, step=8, value=704, label="Height"), |
|
gr.Slider(minimum=16, maximum=256, step=16, value=121, label="Number of Frames"), |
|
gr.Slider(minimum=0.0, maximum=30.0, step=0.05, value=3.35, label="Guidance Scale"), |
|
gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Number of Inference Steps"), |
|
gr.Slider(minimum=1, maximum=60, step=1, value=25, label="FPS"), |
|
], |
|
outputs=gr.Video(label="Generated Video"), |
|
title="LTX-Video Test D", |
|
description="Generate video from image with LTX-Image-to-Video.", |
|
) |
|
|
|
iface.launch() |