Update streamlit_app.py
Browse files- streamlit_app.py +33 -37
streamlit_app.py
CHANGED
@@ -1,74 +1,70 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
from tensorflow.keras.models import load_model
|
4 |
from tensorflow.keras.preprocessing import image
|
|
|
5 |
from PIL import Image
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import io
|
8 |
|
9 |
-
# Load model
|
10 |
@st.cache_resource
|
11 |
-
def
|
12 |
-
model_path =
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
st.error(f"Error loading model: {e}")
|
18 |
-
return None
|
19 |
|
20 |
-
model =
|
21 |
|
22 |
-
#
|
23 |
class_names = ['Fresh', 'Moderately Fresh', 'Spoiled']
|
24 |
custom_messages = {
|
25 |
'Fresh': (
|
26 |
"β
**Fresh Fish Detected**\n"
|
27 |
-
"-
|
28 |
-
"- Bright eyes, red gills, firm flesh
|
29 |
-
"- Safe for raw or cooked consumption."
|
30 |
),
|
31 |
'Moderately Fresh': (
|
32 |
-
"β οΈ **Moderately Fresh
|
33 |
-
"-
|
34 |
-
"-
|
35 |
-
"- Cook thoroughly before eating."
|
36 |
),
|
37 |
'Spoiled': (
|
38 |
-
"π« **Spoiled
|
39 |
-
"-
|
40 |
-
"-
|
41 |
-
"- Not safe for consumption. Discard immediately."
|
42 |
)
|
43 |
}
|
44 |
|
45 |
# Streamlit UI
|
46 |
st.title("π Fish Freshness Classifier")
|
47 |
-
st.subheader("Upload an image of a fish to
|
48 |
|
49 |
-
uploaded_file = st.file_uploader("
|
50 |
|
51 |
-
if uploaded_file
|
52 |
try:
|
|
|
53 |
img = Image.open(uploaded_file).convert("RGB")
|
54 |
-
img_resized = img.resize((224, 224)) # Match model input
|
55 |
img_array = image.img_to_array(img_resized)
|
56 |
-
img_array = np.expand_dims(img_array / 255.0, axis=0)
|
57 |
|
|
|
58 |
prediction = model.predict(img_array)
|
59 |
predicted_index = np.argmax(prediction)
|
60 |
-
confidence = float(np.max(prediction))
|
61 |
predicted_class = class_names[predicted_index]
|
|
|
62 |
|
63 |
-
#
|
64 |
-
st.image(img, caption=
|
65 |
-
st.markdown(f"### π― Prediction: **{predicted_class}** ({confidence*100:.2f}% confidence)")
|
66 |
st.markdown(custom_messages[predicted_class])
|
67 |
|
68 |
-
# Show
|
69 |
-
st.subheader("π
|
70 |
for i, class_name in enumerate(class_names):
|
71 |
st.write(f"- {class_name}: {prediction[0][i]*100:.2f}%")
|
72 |
|
73 |
except Exception as e:
|
74 |
-
st.error(f"Error processing image: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
from tensorflow.keras.models import load_model
|
4 |
from tensorflow.keras.preprocessing import image
|
5 |
+
import numpy as np
|
6 |
from PIL import Image
|
|
|
|
|
7 |
|
8 |
+
# Load model from Hugging Face Model Hub
|
9 |
@st.cache_resource
|
10 |
+
def load_model_from_hf():
|
11 |
+
model_path = hf_hub_download(
|
12 |
+
repo_id="1Codephoenix/fish-freshness-model",
|
13 |
+
filename="fish_freshness_model_retrained_final.keras"
|
14 |
+
)
|
15 |
+
return load_model(model_path)
|
|
|
|
|
16 |
|
17 |
+
model = load_model_from_hf()
|
18 |
|
19 |
+
# Class labels and custom messages
|
20 |
class_names = ['Fresh', 'Moderately Fresh', 'Spoiled']
|
21 |
custom_messages = {
|
22 |
'Fresh': (
|
23 |
"β
**Fresh Fish Detected**\n"
|
24 |
+
"- Age: Less than 1 day old\n"
|
25 |
+
"- Characteristics: Bright eyes, red gills, firm flesh"
|
|
|
26 |
),
|
27 |
'Moderately Fresh': (
|
28 |
+
"β οΈ **Moderately Fresh**\n"
|
29 |
+
"- Age: 2β3 days\n"
|
30 |
+
"- Characteristics: Slightly dull, odor begins, flesh softens"
|
|
|
31 |
),
|
32 |
'Spoiled': (
|
33 |
+
"π« **Spoiled Fish**\n"
|
34 |
+
"- Age: 4+ days or treated\n"
|
35 |
+
"- Characteristics: Cloudy eyes, odor, unsafe to eat"
|
|
|
36 |
)
|
37 |
}
|
38 |
|
39 |
# Streamlit UI
|
40 |
st.title("π Fish Freshness Classifier")
|
41 |
+
st.subheader("Upload an image of a fish to predict its freshness level")
|
42 |
|
43 |
+
uploaded_file = st.file_uploader("Upload Fish Image", type=["jpg", "jpeg", "png"])
|
44 |
|
45 |
+
if uploaded_file:
|
46 |
try:
|
47 |
+
# Load and preprocess the image
|
48 |
img = Image.open(uploaded_file).convert("RGB")
|
49 |
+
img_resized = img.resize((224, 224)) # Match model input
|
50 |
img_array = image.img_to_array(img_resized)
|
51 |
+
img_array = np.expand_dims(img_array / 255.0, axis=0) # Normalize
|
52 |
|
53 |
+
# Predict
|
54 |
prediction = model.predict(img_array)
|
55 |
predicted_index = np.argmax(prediction)
|
|
|
56 |
predicted_class = class_names[predicted_index]
|
57 |
+
confidence = prediction[0][predicted_index]
|
58 |
|
59 |
+
# Show image and result
|
60 |
+
st.image(img, caption="Uploaded Fish Image", use_column_width=True)
|
61 |
+
st.markdown(f"### π― Prediction: **{predicted_class}** ({confidence * 100:.2f}% confidence)")
|
62 |
st.markdown(custom_messages[predicted_class])
|
63 |
|
64 |
+
# Show all class probabilities
|
65 |
+
st.subheader("π Confidence Scores")
|
66 |
for i, class_name in enumerate(class_names):
|
67 |
st.write(f"- {class_name}: {prediction[0][i]*100:.2f}%")
|
68 |
|
69 |
except Exception as e:
|
70 |
+
st.error(f"β οΈ Error processing image: {e}")
|