File size: 34,113 Bytes
3b4af99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
# --------------------------------------------------------
# SenseTime
# Copyright (c) 2025 SenseTime
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union
import re
import json
import math
import librosa
import numpy as np
from PIL import Image
from decord import VideoReader, cpu
from torch import nn
import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import (GenerationConfig, Qwen3ForCausalLM, WhisperFeatureExtractor)
from transformers.modeling_utils import PreTrainedModel
import onnxruntime
import torchaudio.compliance.kaldi as kaldi
import torchaudio
from transformers.utils.hub import cached_file
from .configuration_interactiveomni import InteractiveOmniConfig
from .modeling_intern_vit import InternVisionModel
from .modeling_whisper import AudioWhisperModel
from .modeling_voicelm import VoiceLM
from .conversation import get_conv_template
from .modeling_flow import CausalMaskedDiffWithXvec
from .modeling_hifigan import HiFTGenerator
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
AUDIO_START_TOKEN = '<audio>'
AUDIO_END_TOKEN = '</audio>'
AUDIO_CONTEXT_TOKEN = '<AUDIO_CONTEXT>'
class InteractiveOmniModel(PreTrainedModel):
config_class = InteractiveOmniConfig
main_input_name = 'pixel_values'
base_model_prefix = 'language_model'
_no_split_modules = ['InternVisionModel', 'AudioWhisperModel', 'Qwen3DecoderLayer', 'Qwen2DecoderLayer']
def __init__(self, config: InteractiveOmniConfig, vision_model=None, language_model=None, audio_model=None):
super().__init__(config)
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.audio_feature_extractor = WhisperFeatureExtractor(**config.audio_preprocessor_config)
self.transform = self.build_transform(input_size=image_size)
self.campplus_session = None
self.default_speaker_embedding = None
self.default_wav_path = None
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = InternVisionModel(config.vision_config)
if audio_model is not None:
self.audio_model = audio_model
else:
self.audio_model = AudioWhisperModel(config.audio_config)
if language_model is not None:
self.language_model = language_model
else:
self.language_model = Qwen3ForCausalLM(config.llm_config)
self.voicelm_model = VoiceLM(config.voicelm_config)
self.flow_model = CausalMaskedDiffWithXvec(config.flow_config).float()
self.hifigan_model = HiFTGenerator(config.hifigan_config).float()
vit_hidden_size = config.vision_config.hidden_size
audio_hidden_size = config.audio_config.d_model
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
self.mlp2 = nn.Sequential(
nn.LayerNorm(audio_hidden_size),
nn.Linear(audio_hidden_size, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
self.mlp_llm2voicelm = nn.Sequential(
nn.LayerNorm(llm_hidden_size),
nn.Linear(llm_hidden_size, config.voicelm_config.llm_input_size),
nn.GELU(),
nn.Linear(config.voicelm_config.llm_input_size, config.voicelm_config.llm_input_size)
)
self.gate = nn.Sequential(
nn.Linear(2 * llm_hidden_size, llm_hidden_size),
nn.Sigmoid()
)
self.img_context_token_id = None
self.audio_context_token_id = None
self.neftune_alpha = None
self.post_init()
pass
def fusion(self, rep, emb):
gate = self.gate(torch.cat([rep, emb], dim=-1))
return rep * gate + emb * (1 - gate)
def __load_campplus_session(self, campplus_path:str):
''''''
logger.info(f"load campplus session: {campplus_path}")
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
campplus_session = onnxruntime.InferenceSession(
campplus_path,
sess_options=option,
providers=["CPUExecutionProvider"],
)
self.campplus_session = campplus_session
return campplus_session
def extract_speaker_embedding(self, prompt_wav:str):
'''extract speaker embedding tensor'''
logger.info(f"extract speaker embedding: {prompt_wav}")
target_sr = 16000
prompt_speech_16k, sample_rate = torchaudio.load(prompt_wav)
prompt_speech_16k = prompt_speech_16k.mean(dim=0, keepdim=True)
if sample_rate != target_sr:
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
prompt_speech_16k = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(prompt_speech_16k)
feat = kaldi.fbank(
prompt_speech_16k,
num_mel_bins=80,
dither=0,
sample_frequency=target_sr,
)
feat = feat - feat.mean(dim=0, keepdim=True)
speaker_embedding = self.campplus_session.run(
None,
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()},
)[0].flatten().tolist()
speaker_embedding = torch.tensor([speaker_embedding])
return speaker_embedding
def build_transform(self, input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(self, image, min_num=1, max_num=6, image_size=448):
assert min_num == 1
original_width, original_height = image.size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / (image_size * image_size)
multiple = min(math.ceil(ratio), max_num)
if multiple <= 1:
return [1, 1]
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i > max_num:
continue
candidate_split_grids_nums.append(i)
candidate_grids = []
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
return best_grid
def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
target_aspect_ratio = self.find_closest_aspect_ratio(image, min_num, max_num, image_size)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(self, image, input_size=448, max_num=12):
if not isinstance(image, Image.Image):
image = Image.open(image).convert('RGB')
images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
return images
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
vit_embeds = vit_embeds[:, 1:, :]
if self.training and self.neftune_alpha is not None:
vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha)
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)#.to(pixel_values.device)
return vit_embeds
def get_T_after_cnn(self, L_in, dilation=1):
for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
L_out = 1 + L_out // stride
L_in = L_out
return L_out
def process_audio(self, audio, return_tensors, sampling_rate=16000):
L = (audio.shape[0] if audio.shape[0] <= 480000 else 480000) # max_length < 30s
mel_len = L // 160
audio_len_after_cnn = self.get_T_after_cnn(mel_len)
audio_token_num = (audio_len_after_cnn - 2) // 2 + 1
inputs = self.audio_feature_extractor(audio, return_tensors=return_tensors, sampling_rate=sampling_rate)
inputs['audio_len_after_cnn'] = torch.tensor(audio_len_after_cnn, dtype=torch.long)
inputs['audio_token_num'] = torch.tensor(audio_token_num, dtype=torch.long)
return inputs
def load_audio(self, audio_file, sampling_rate=16000):
audio_values, _ = librosa.load(audio_file, sr=sampling_rate) # sample rate should be 16000
audio_process_values = self.process_audio(audio_values, sampling_rate=sampling_rate, return_tensors="pt")
input_features = audio_process_values['input_features']
audio_len_after_cnn = audio_process_values['audio_len_after_cnn']
audio_token_num = audio_process_values['audio_token_num']
audio_input_dict = {'audio_values': input_features,
'audio_len_after_cnn': audio_len_after_cnn,
'audio_token_num': audio_token_num,
}
return audio_input_dict
def extract_audio_feature(self, audio_values, audio_len_after_cnn):
audio_values = audio_values.squeeze(1)
max_len_in_batch = int(torch.max(audio_len_after_cnn).item())
padding_mask = torch.ones([audio_values.size(0), max_len_in_batch]).to(dtype=audio_values.dtype, device=audio_values.device)
for index in range(len(audio_values)):
padding_mask[index, :int(audio_len_after_cnn[index].item())] = 0
last_hidden_state = self.audio_model(audio_values, padding_mask, audio_len_after_cnn) # (bs, max_token_num, 1280)
audio_embeds = self.mlp2(last_hidden_state)
return audio_embeds
def get_index(self, bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(self, video_path, bound=None, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
frames = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
frames.append(img)
return frames
def find_second_last_occurrence(self, input_ids_list, target_id):
'''find taget_id index'''
reversed_list = list(reversed(input_ids_list))
first_occurrence = -1
second_occurrence = -1
for idx, val in enumerate(reversed_list):
if val == target_id:
if first_occurrence == -1:
first_occurrence = idx # first index
elif second_occurrence == -1:
second_occurrence = idx # second index
break
if second_occurrence == -1:
return -1
return len(input_ids_list) - second_occurrence - 1
def decode_speech_tokens(
self,
speech_tokens,
speaker_embedding=None,
flow_prompt_speech_token=None,
prompt_speech_feat=None,
finalize=True,
token_offset=0,
):
if speaker_embedding is None:
speaker_embedding = torch.zeros(1, 192)
pass
if flow_prompt_speech_token is None:
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32)
pass
if prompt_speech_feat is None:
prompt_speech_feat = torch.zeros(1, 0, 80)
pass
self.flow_model.encoder.static_chunk_size = 2 * self.flow_model.input_frame_rate # 50
self.flow_model.decoder.estimator.static_chunk_size = 2 * self.flow_model.input_frame_rate * self.flow_model.token_mel_ratio # 100
device = speech_tokens.device
tts_mel, _ = self.flow_model.inference(
token=speech_tokens.to(device),
token_len=torch.tensor([speech_tokens.shape[1]], dtype=torch.int32).to(device),
prompt_token=flow_prompt_speech_token.to(device),
prompt_token_len=torch.tensor([flow_prompt_speech_token.shape[1]], dtype=torch.int32).to(device),
prompt_feat=prompt_speech_feat.to(device),
prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(device),
embedding=speaker_embedding.to(device),
finalize=finalize,
)
tts_mel = tts_mel[:, :, token_offset * self.config.flow_config.token_mel_ratio:]
hift_cache_source = torch.zeros(1, 1, 0)
tts_speech, tts_source = self.hifigan_model.inference(speech_feat=tts_mel, cache_source=hift_cache_source) # [1, sampling point num]
return tts_speech
@torch.no_grad()
def generate(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.FloatTensor,
attention_mask: torch.LongTensor,
visual_features: Optional[torch.FloatTensor] = None,
audio_values: Optional[torch.FloatTensor] = None,
audio_len_after_cnn: Optional[bool] = None,
audio_token_num: Optional[bool] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
start_token_id:int = 151644,
generate_audio:bool = False,
speaker_embedding:torch.Tensor = torch.zeros(1, 192),
mix_ratio:list=[5,25],
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
assert self.audio_context_token_id is not None
vit_embeds = None
if visual_features is not None:
vit_embeds = visual_features
elif pixel_values is not None:
vit_embeds = self.extract_feature(pixel_values)
cur_conv_start_id = self.find_second_last_occurrence(input_ids.tolist()[0], start_token_id)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
if vit_embeds is not None:
selected = (input_ids == self.img_context_token_id)
input_embeds[selected] = vit_embeds.reshape(-1, C)
if audio_values is not None and audio_len_after_cnn is not None and audio_token_num is not None:
audio_embeds = self.extract_audio_feature(audio_values, audio_len_after_cnn)
output_audios = []
for i in range(len(audio_token_num)):
token_num = int(audio_token_num[i].item())
audio = audio_embeds[i][:token_num]
output_audios.append(audio)
output_audios = torch.cat(output_audios, dim=0)
selected = (input_ids == self.audio_context_token_id)
input_embeds[selected] = output_audios.reshape(-1, C)
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states or generate_audio,
return_dict_in_generate=generate_audio,
use_cache=True,
**generate_kwargs,
)
if not generate_audio:
return outputs, None, None
hidden_states = torch.cat(
[outputs.hidden_states[0][-1][:, -1:, :]] + [outputs.hidden_states[i][-1] for i in range(1, len(outputs.hidden_states))],
dim=1,
)
sampled_token = outputs.sequences
if sampled_token.shape[1] == hidden_states.shape[1] + 1:
sampled_token = sampled_token[:, 1:]
sampled_token_embeddings = self.language_model.get_input_embeddings()(sampled_token)
target_text_token_hidden_states = self.fusion(hidden_states, sampled_token_embeddings)
input_token_hidden_states = outputs.hidden_states[0][-1][:, cur_conv_start_id:-1, :]
question_input_embeddings = input_embeds[:, cur_conv_start_id+1:, :]
input_token_hidden_states = self.fusion(input_token_hidden_states, question_input_embeddings)
input_feature = self.mlp_llm2voicelm(input_token_hidden_states)
target_text_feature = self.mlp_llm2voicelm(target_text_token_hidden_states) #
try:
speech_tokens = self.voicelm_model.inference_bistream(input_feature, target_text_feature, mix_ratio=mix_ratio)
speech_tokens = torch.LongTensor([speech_tokens]).to(input_feature.device)
tts_speech = self.decode_speech_tokens(
speech_tokens,
speaker_embedding=speaker_embedding,
)
except Exception as e:
logger.warning(f"=========voice lm except:{e}")
return outputs.sequences,None, None
return outputs.sequences, speech_tokens, tts_speech
def chat(
self,
tokenizer,
generation_config,
messages,
max_patch_num=12,
frame=8,
generate_audio=False,
speaker_embedding=torch.zeros(1, 192),
print_flag=True,
):
if self.flow_model.dtype != torch.float32 or self.hifigan_model.dtype != torch.float32:
logger.info(f"reset flow model and higigan model dtype to float32")
self.reset_vocoder()
pass
if messages is None or len(messages) == 0:
raise RuntimeError('no messages')
role_transfer_dict = {
'system': ['user'],
'user': ['assistant'],
'assistant': ['user'],
}
first_role = ['system', 'user']
last_role = ['user']
if messages[-1]['role'] not in last_role:
raise RuntimeError(f"last role error, expect {last_role}, but got {messages[-1]}")
current_role = None
dynamic_images = list()
dynamic_nums = list()
audio_values = list()
audio_len_after_cnn = list()
audio_token_num = list()
template = get_conv_template(self.template)
for index in range(len(messages)):
text = ''
audios = list()
images = list()
message = messages[index]
if index == 0:
if message['role'] not in first_role:
raise RuntimeError(f'first role error expect {first_role}, but got {message}')
else:
if message['role'] not in current_role:
raise RuntimeError(f'role error expect {current_role}, but got {message}')
current_role = message['role']
if isinstance(message["content"], list):
for item in message["content"]:
if item['type'] == 'text':
if item.get('text', None) is None:
continue
text += item['text']
elif item['type'] == 'audio':
if item.get('audio', None) is None:
continue
if type(item['audio']) is list:
assert len(item['audio']) == 1, f'only support 1 audio file in round, but got {item["audio"]}'
audio = item['audio'][0]
else:
audio = item['audio']
audios.append(audio)
elif item['type'] == 'image':
if item.get('image', None) is None:
continue
if type(item['image']) is not list:
images.append(item['image'])
else:
images.extend(item['image'])
elif item['type'] == 'video':
if item.get('video', None) is None:
continue
if type(item['video']) is list:
assert len(item['video']) == 1, f'only support 1 video file in round, but got {item["video"]}'
video = item['video'][0]
else:
video = item['video']
frames = self.load_video(video, num_segments=frame)
images.extend(frames)
else:
assert isinstance(message["content"], str), message["content"]
text = message["content"]
if len(audios) != 0:
assert len(audios) == 1, f'only support 1 audio file in round, but got {audios}'
if '<audio>' in text:
matches = re.findall(r"<audio>", text)
assert len(matches) == len(audios), f'<audio> error {text} {len(audios)}' + text
text = re.sub(r'(<audio>)(?!\n)', r'\1\n', text)
else:
text = '<audio>\n'*len(audios) + text
audio_path = audios[0]
audio_input_dict = self.load_audio(audio_path)
assert audio_input_dict['audio_token_num'].item() != 0, f'audio_token_num of {audio_path} is 0.'
audio_values.append(audio_input_dict['audio_values'])
audio_len_after_cnn.append(audio_input_dict['audio_len_after_cnn'])
audio_token_num.append(audio_input_dict['audio_token_num'])
if images is not None:
if '<image>' in text:
matches = re.findall(r"<image>", text)
assert len(matches) == len(images), f'<image> error {text} {len(images)}' + text
text = re.sub(r'(<image>)(?!\n)', r'\1\n', text)
else:
text = '<image>\n'*len(images) + text
for image in images:
dynamic_image = self.load_image(image, max_num=max_patch_num)
dynamic_images += dynamic_image
dynamic_nums.append(len(dynamic_image))
if message['role'] == 'system':
template.set_system_message(text)
elif message['role'] == 'user':
template.append_message(template.roles[0], text)
elif message['role'] == 'assistant':
template.append_message(template.roles[1], text)
else:
raise ValueError('unexpected role')
current_role = role_transfer_dict[current_role]
template.append_message(template.roles[1], None)
if len(audio_values) != 0:
audio_values = torch.cat(audio_values, dim=0).to(dtype=self.dtype).cuda() # [num_audio, 128, 3000]
audio_len_after_cnn = torch.stack(audio_len_after_cnn, dim=0) # [num_audio]
audio_token_num = torch.stack(audio_token_num, dim=0) # [num_audio]
else:
audio_values = None
audio_len_after_cnn = None
audio_token_num = None
if len(dynamic_images) != 0:
pixel_values = [self.transform(image) for image in dynamic_images]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
else:
pixel_values = None
dynamic_nums = None
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
audio_context_token_id = tokenizer.convert_tokens_to_ids(AUDIO_CONTEXT_TOKEN)
self.audio_context_token_id = audio_context_token_id
# also add end-of-assistant token in eos token id to avoid unnecessary generation
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
start_token_id = tokenizer.convert_tokens_to_ids(["<|im_start|>"])[0]
query = template.get_prompt()
if audio_values is not None:
if print_flag:
logger.info(f'audio num: {len(audio_token_num)}')
audio_tokens_list = list()
for index in range(len(audio_token_num)):
audio_token_num_i = audio_token_num[index]
if print_flag:
logger.info(f'audio_token_num: {audio_token_num_i}')
audio_tokens = AUDIO_START_TOKEN + AUDIO_CONTEXT_TOKEN * audio_token_num_i + AUDIO_END_TOKEN
audio_tokens_list.append(audio_tokens)
audio_tokens_iter = iter(audio_tokens_list)
query = re.sub(r"<audio>", lambda match:next(audio_tokens_iter), query)
if pixel_values is not None:
if print_flag:
logger.info(f'image num: {len(dynamic_nums)}')
image_tokens_list = list()
total_dynamic_num = 0
for index in range(len(dynamic_nums)):
dynamic_num = dynamic_nums[index]
total_dynamic_num += dynamic_num
if print_flag:
logger.info(f'dynamic ViT batch size: {dynamic_num}')
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * dynamic_num + IMG_END_TOKEN
image_tokens_list.append(image_tokens)
assert total_dynamic_num == pixel_values.shape[0], f'dynamic num not equal, {total_dynamic_num}, {pixel_values.shape[0]}'
image_tokens_iter = iter(image_tokens_list)
query = re.sub(r"<image>", lambda match:next(image_tokens_iter), query)
model_inputs = tokenizer(query, return_tensors='pt', add_special_tokens=False)
input_ids = model_inputs['input_ids'].cuda()
attention_mask = model_inputs['attention_mask'].cuda()
generation_config['eos_token_id'] = eos_token_id
generation_output, speech_token, audio_bytes = self.generate(
pixel_values=pixel_values,
audio_values=audio_values,
audio_len_after_cnn=audio_len_after_cnn,
audio_token_num=audio_token_num,
input_ids=input_ids,
attention_mask=attention_mask,
generate_audio=generate_audio,
start_token_id=start_token_id,
speaker_embedding=speaker_embedding,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=False)[0]
response = response.split("<|im_end|>")[0].replace('<|endoftext|>', '').strip()
query_to_print = query
if pixel_values is not None:
query_to_print = query_to_print.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if audio_values is not None:
query_to_print = query_to_print.replace(AUDIO_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{AUDIO_START_TOKEN}{AUDIO_END_TOKEN}', '<audio>')
if print_flag:
logger.info('query: ' + json.dumps(query_to_print, ensure_ascii=False))
logger.info('response: ' + response)
if generate_audio:
return response, audio_bytes
return response
def __cache_file(self, pretrained_model_name_or_path:str, filename:str, **kw):
'''cache some file'''
full_path = cached_file(
pretrained_model_name_or_path,
filename,
subfolder=kw.pop("subfolder", None),
cache_dir=kw.pop("cache_dir", None),
force_download=kw.pop("force_download", False),
proxies=kw.pop("proxies", None),
resume_download=kw.pop("resume_download", None),
local_files_only=kw.pop("local_files_only", False),
token=kw.pop("use_auth_token", None),
revision=kw.pop("revision", None),
)
if full_path is None:
raise ValueError(f"""{pretrained_model_name_or_path}/{filename} not exists""")
return full_path
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path,
*model_args,
config=None,
cache_dir=None,
ignore_mismatched_sizes=False,
force_download=False,
local_files_only=False,
token=None,
revision="main",
use_safetensors=None,
weights_only=True,
**kwargs,
):
model = super().from_pretrained(
pretrained_model_name_or_path,
*model_args,
config=config,
cache_dir=cache_dir,
ignore_mismatched_sizes=ignore_mismatched_sizes,
force_download=force_download,
local_files_only=local_files_only,
token=token,
revision=revision,
use_safetensors=use_safetensors,
weights_only=weights_only,
**kwargs,
)
campplus_path = model.__cache_file(pretrained_model_name_or_path, "campplus.onnx", **kwargs)
model.__load_campplus_session(campplus_path)
default_wav_path = model.__cache_file(pretrained_model_name_or_path, "taozi.wav", **kwargs)
model.default_wav_path = default_wav_path
model.default_speaker_embedding = model.extract_speaker_embedding(default_wav_path)
return model |