--- language: - en library_name: transformers tags: - glm - MOE - pruning - compression - mlx - mlx-my-repo license: mit name: cerebras/GLM-4.6-REAP-252B-A32B description: 'This model was obtained by uniformly pruning 30% of experts in GLM-4.6 using the REAP method. ' readme: 'https://huggingface.co/cerebras/GLM-4.6-REAP-252B-A32B/main/README.md ' license_link: https://huggingface.co/zai-org/GLM-4.6/blob/main/LICENSE pipeline_tag: text-generation base_model: cerebras/GLM-4.6-REAP-252B-A32B --- # saviochow/GLM-4.6-REAP-252B-A32B-mlx-2Bit The Model [saviochow/GLM-4.6-REAP-252B-A32B-mlx-2Bit](https://huggingface.co/saviochow/GLM-4.6-REAP-252B-A32B-mlx-2Bit) was converted to MLX format from [cerebras/GLM-4.6-REAP-252B-A32B](https://huggingface.co/cerebras/GLM-4.6-REAP-252B-A32B) using mlx-lm version **0.26.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("saviochow/GLM-4.6-REAP-252B-A32B-mlx-2Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```