Update README.md
Browse files
README.md
CHANGED
|
@@ -37,7 +37,7 @@ Then you can use the model like this:
|
|
| 37 |
from sentence_transformers import SentenceTransformer
|
| 38 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 39 |
|
| 40 |
-
model = SentenceTransformer('
|
| 41 |
embeddings = model.encode(sentences)
|
| 42 |
print(embeddings)
|
| 43 |
```
|
|
@@ -63,8 +63,8 @@ def mean_pooling(model_output, attention_mask):
|
|
| 63 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 64 |
|
| 65 |
# Load model from HuggingFace Hub
|
| 66 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
| 67 |
-
model = AutoModel.from_pretrained('
|
| 68 |
|
| 69 |
# Tokenize sentences
|
| 70 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
| 37 |
from sentence_transformers import SentenceTransformer
|
| 38 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 39 |
|
| 40 |
+
model = SentenceTransformer('econo-sentence')
|
| 41 |
embeddings = model.encode(sentences)
|
| 42 |
print(embeddings)
|
| 43 |
```
|
|
|
|
| 63 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 64 |
|
| 65 |
# Load model from HuggingFace Hub
|
| 66 |
+
tokenizer = AutoTokenizer.from_pretrained('econo-sentence')
|
| 67 |
+
model = AutoModel.from_pretrained('econo-sentence')
|
| 68 |
|
| 69 |
# Tokenize sentences
|
| 70 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|