Dimple-7B
Browse files- config.json +52 -0
- configuration_dimple.py +164 -0
- generation_config.json +20 -0
- generation_utils.py +707 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +740 -0
- modeling_dimple.py +1872 -0
config.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/local_home2/yurunpeng/DvD/output/DiM-v0.5.3-Instruct-7B-autoreg-instruct_llava_next_instruct_lr_5e-07_wd_0.0_bs_128_tt_dlm_9fe0af92_seed_0_autoreg-recovery",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DimpleModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_dimple.DimpleConfig",
|
| 9 |
+
"AutoModel": "modeling_dimple.DimpleModel"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 151643,
|
| 12 |
+
"eos_token_id": 151643,
|
| 13 |
+
"full_attn_mask": true,
|
| 14 |
+
"hidden_act": "silu",
|
| 15 |
+
"hidden_size": 3584,
|
| 16 |
+
"image_token_id": 151655,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 18944,
|
| 19 |
+
"mask_token_id": 151666,
|
| 20 |
+
"max_position_embeddings": 131072,
|
| 21 |
+
"max_window_layers": 28,
|
| 22 |
+
"model_type": "dimple",
|
| 23 |
+
"mrope_section": [
|
| 24 |
+
16,
|
| 25 |
+
24,
|
| 26 |
+
24
|
| 27 |
+
],
|
| 28 |
+
"num_attention_heads": 28,
|
| 29 |
+
"num_hidden_layers": 28,
|
| 30 |
+
"num_key_value_heads": 4,
|
| 31 |
+
"pad_token_id": 151643,
|
| 32 |
+
"rms_norm_eps": 1e-06,
|
| 33 |
+
"rope_scaling": null,
|
| 34 |
+
"rope_theta": 1000000.0,
|
| 35 |
+
"sliding_window": null,
|
| 36 |
+
"tie_word_embeddings": false,
|
| 37 |
+
"torch_dtype": "bfloat16",
|
| 38 |
+
"transformers_version": "4.46.2",
|
| 39 |
+
"use_cache": false,
|
| 40 |
+
"use_mrope": false,
|
| 41 |
+
"use_sliding_window": false,
|
| 42 |
+
"video_token_id": 151656,
|
| 43 |
+
"vision_config": {
|
| 44 |
+
"in_chans": 3,
|
| 45 |
+
"model_type": "dimple",
|
| 46 |
+
"spatial_patch_size": 14
|
| 47 |
+
},
|
| 48 |
+
"vision_end_token_id": 151653,
|
| 49 |
+
"vision_start_token_id": 151652,
|
| 50 |
+
"vision_token_id": 151654,
|
| 51 |
+
"vocab_size": 152064
|
| 52 |
+
}
|
configuration_dimple.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dimple team and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Dimple model configuration"""
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
from typing import Union
|
| 19 |
+
|
| 20 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 21 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 22 |
+
from transformers.utils import logging
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger("Dimple."+__name__)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class DimpleVisionConfig(PretrainedConfig):
|
| 29 |
+
model_type = "dimple"
|
| 30 |
+
|
| 31 |
+
def __init__(
|
| 32 |
+
self,
|
| 33 |
+
depth=32,
|
| 34 |
+
hidden_size=1280,
|
| 35 |
+
hidden_act="silu",
|
| 36 |
+
intermediate_size=3420,
|
| 37 |
+
num_heads=16,
|
| 38 |
+
in_channels=3,
|
| 39 |
+
patch_size=14,
|
| 40 |
+
spatial_merge_size=2,
|
| 41 |
+
temporal_patch_size=2,
|
| 42 |
+
tokens_per_second=2,
|
| 43 |
+
window_size=112,
|
| 44 |
+
out_hidden_size=3584,
|
| 45 |
+
fullatt_block_indexes=[7, 15, 23, 31],
|
| 46 |
+
**kwargs,
|
| 47 |
+
):
|
| 48 |
+
super().__init__(**kwargs)
|
| 49 |
+
|
| 50 |
+
self.depth = depth
|
| 51 |
+
self.hidden_size = hidden_size
|
| 52 |
+
self.hidden_act = hidden_act
|
| 53 |
+
self.intermediate_size = intermediate_size
|
| 54 |
+
self.num_heads = num_heads
|
| 55 |
+
self.in_channels = in_channels
|
| 56 |
+
self.patch_size = patch_size
|
| 57 |
+
self.spatial_merge_size = spatial_merge_size
|
| 58 |
+
self.temporal_patch_size = temporal_patch_size
|
| 59 |
+
self.tokens_per_second = tokens_per_second
|
| 60 |
+
self.window_size = window_size
|
| 61 |
+
self.fullatt_block_indexes = fullatt_block_indexes
|
| 62 |
+
self.out_hidden_size = out_hidden_size
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
@classmethod
|
| 66 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 67 |
+
cls._set_token_in_kwargs(kwargs)
|
| 68 |
+
|
| 69 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 70 |
+
|
| 71 |
+
if config_dict.get("model_type") == "dimple":
|
| 72 |
+
config_dict = config_dict["vision_config"]
|
| 73 |
+
|
| 74 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 75 |
+
logger.warning(
|
| 76 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 77 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class DimpleConfig(PretrainedConfig):
|
| 84 |
+
model_type = "dimple"
|
| 85 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 86 |
+
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
vocab_size=151936,
|
| 90 |
+
hidden_size=4096,
|
| 91 |
+
intermediate_size=22016,
|
| 92 |
+
num_hidden_layers=32,
|
| 93 |
+
num_attention_heads=32,
|
| 94 |
+
num_key_value_heads=32,
|
| 95 |
+
hidden_act="silu",
|
| 96 |
+
max_position_embeddings=32768,
|
| 97 |
+
initializer_range=0.02,
|
| 98 |
+
image_token_id = 151655,
|
| 99 |
+
video_token_id = 151656,
|
| 100 |
+
vision_end_token_id = 151653,
|
| 101 |
+
vision_start_token_id = 151652,
|
| 102 |
+
vision_token_id = 151654,
|
| 103 |
+
rms_norm_eps=1e-6,
|
| 104 |
+
use_cache=False, # cache not used in diffusion
|
| 105 |
+
tie_word_embeddings=False,
|
| 106 |
+
rope_theta=10000.0,
|
| 107 |
+
use_sliding_window=False,
|
| 108 |
+
sliding_window=4096,
|
| 109 |
+
max_window_layers=28,
|
| 110 |
+
attention_dropout=0.0,
|
| 111 |
+
mask_token_id=151666,
|
| 112 |
+
pad_token_id=151643,
|
| 113 |
+
vision_config=None,
|
| 114 |
+
rope_scaling=None,
|
| 115 |
+
mrope_section=[16,24,24],
|
| 116 |
+
full_attn_mask = True,
|
| 117 |
+
**kwargs,
|
| 118 |
+
):
|
| 119 |
+
if isinstance(vision_config, dict):
|
| 120 |
+
self.vision_config = DimpleVisionConfig(**vision_config)
|
| 121 |
+
elif vision_config is None:
|
| 122 |
+
self.vision_config = DimpleVisionConfig()
|
| 123 |
+
|
| 124 |
+
self.vocab_size = vocab_size
|
| 125 |
+
self.max_position_embeddings = max_position_embeddings
|
| 126 |
+
self.hidden_size = hidden_size
|
| 127 |
+
self.intermediate_size = intermediate_size
|
| 128 |
+
self.num_hidden_layers = num_hidden_layers
|
| 129 |
+
self.num_attention_heads = num_attention_heads
|
| 130 |
+
self.use_sliding_window = use_sliding_window
|
| 131 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
| 132 |
+
self.max_window_layers = max_window_layers
|
| 133 |
+
|
| 134 |
+
# for backward compatibility
|
| 135 |
+
if num_key_value_heads is None:
|
| 136 |
+
num_key_value_heads = num_attention_heads
|
| 137 |
+
|
| 138 |
+
self.num_key_value_heads = num_key_value_heads
|
| 139 |
+
self.hidden_act = hidden_act
|
| 140 |
+
self.initializer_range = initializer_range
|
| 141 |
+
self.rms_norm_eps = rms_norm_eps
|
| 142 |
+
self.use_cache = use_cache
|
| 143 |
+
self.rope_theta = rope_theta
|
| 144 |
+
self.rope_scaling = rope_scaling
|
| 145 |
+
self.attention_dropout = attention_dropout
|
| 146 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 147 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 148 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 149 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 150 |
+
rope_config_validation(self, ignore_keys={"mrope_section"})
|
| 151 |
+
self.mrope_section = mrope_section
|
| 152 |
+
|
| 153 |
+
super().__init__(
|
| 154 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 155 |
+
**kwargs,
|
| 156 |
+
)
|
| 157 |
+
self.mask_token_id = mask_token_id
|
| 158 |
+
self.pad_token_id = pad_token_id
|
| 159 |
+
self.image_token_id = image_token_id
|
| 160 |
+
self.video_token_id = video_token_id
|
| 161 |
+
self.vision_end_token_id = vision_end_token_id
|
| 162 |
+
self.vision_start_token_id = vision_start_token_id
|
| 163 |
+
self.vision_token_id = vision_token_id
|
| 164 |
+
self.full_attn_mask = full_attn_mask
|
generation_config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"alg": "origin",
|
| 4 |
+
"alg_p_threshold": null,
|
| 5 |
+
"alg_temp": null,
|
| 6 |
+
"bos_token_id": 151643,
|
| 7 |
+
"decoding_pipeline": "dim",
|
| 8 |
+
"eos_token_id": 151643,
|
| 9 |
+
"eps": 0.001,
|
| 10 |
+
"mask_token_id": null,
|
| 11 |
+
"output_history": false,
|
| 12 |
+
"pad_token_id": 151643,
|
| 13 |
+
"steps": 512,
|
| 14 |
+
"temperature": 0.0,
|
| 15 |
+
"top_k": null,
|
| 16 |
+
"top_p": null,
|
| 17 |
+
"transformers_version": "4.46.2",
|
| 18 |
+
"use_cache": false,
|
| 19 |
+
"use_original_confidence": true
|
| 20 |
+
}
|
generation_utils.py
ADDED
|
@@ -0,0 +1,707 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dimple team and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import warnings
|
| 17 |
+
import copy
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.distributions as dists
|
| 23 |
+
from torch.nn import functional as F
|
| 24 |
+
from transformers import __version__
|
| 25 |
+
from transformers.generation.configuration_utils import (
|
| 26 |
+
GenerationConfig,
|
| 27 |
+
)
|
| 28 |
+
from transformers.utils import (
|
| 29 |
+
ModelOutput,
|
| 30 |
+
is_torchdynamo_compiling,
|
| 31 |
+
logging,
|
| 32 |
+
)
|
| 33 |
+
from transformers.cache_utils import (
|
| 34 |
+
Cache,
|
| 35 |
+
DynamicCache,
|
| 36 |
+
)
|
| 37 |
+
from transformers.generation.utils import GenerationMixin
|
| 38 |
+
|
| 39 |
+
logger = logging.get_logger("Dimple."+__name__)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def top_p_logits(logits, top_p=None):
|
| 43 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 44 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 45 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 46 |
+
# Shift the indices to the right to keep the first token above the threshold
|
| 47 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 48 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 49 |
+
|
| 50 |
+
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
|
| 51 |
+
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
| 52 |
+
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
|
| 53 |
+
return logits
|
| 54 |
+
|
| 55 |
+
def top_k_logits(logits, top_k=None):
|
| 56 |
+
top_k = min(top_k, logits.size(-1)) # Safety check
|
| 57 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
| 58 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 59 |
+
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
|
| 60 |
+
return logits
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False, use_original_confidence = True):
|
| 64 |
+
|
| 65 |
+
if use_original_confidence:
|
| 66 |
+
original_logits = logits.clone()
|
| 67 |
+
original_probs = torch.softmax(original_logits, dim=-1)
|
| 68 |
+
|
| 69 |
+
if temperature > 0:
|
| 70 |
+
logits = logits / temperature
|
| 71 |
+
if top_p is not None and top_p < 1:
|
| 72 |
+
logits = top_p_logits(logits, top_p)
|
| 73 |
+
if top_k is not None:
|
| 74 |
+
logits = top_k_logits(logits, top_k)
|
| 75 |
+
probs = torch.softmax(logits, dim=-1)
|
| 76 |
+
|
| 77 |
+
if temperature > 0:
|
| 78 |
+
try:
|
| 79 |
+
x0 = dists.Categorical(probs=probs).sample()
|
| 80 |
+
if use_original_confidence:
|
| 81 |
+
confidence = torch.gather(original_probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
| 82 |
+
else:
|
| 83 |
+
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
| 84 |
+
except:
|
| 85 |
+
if use_original_confidence:
|
| 86 |
+
_, x0 = probs.max(dim=-1)
|
| 87 |
+
confidence = torch.gather(original_probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
| 88 |
+
else:
|
| 89 |
+
confidence, x0 = probs.max(dim=-1)
|
| 90 |
+
else:
|
| 91 |
+
if use_original_confidence:
|
| 92 |
+
_, x0 = probs.max(dim=-1)
|
| 93 |
+
confidence = torch.gather(original_probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
| 94 |
+
else:
|
| 95 |
+
confidence, x0 = probs.max(dim=-1)
|
| 96 |
+
|
| 97 |
+
if margin_confidence:
|
| 98 |
+
if use_original_confidence:
|
| 99 |
+
sorted_probs, _ = torch.sort(original_probs, dim=-1, descending=True)
|
| 100 |
+
# Extract top1 and top2 probabilities
|
| 101 |
+
top1_probs = sorted_probs[:, 0]
|
| 102 |
+
top2_probs = sorted_probs[:, 1]
|
| 103 |
+
# Calculate confidence as top1 - top2
|
| 104 |
+
confidence = top1_probs - top2_probs
|
| 105 |
+
else:
|
| 106 |
+
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
| 107 |
+
# Extract top1 and top2 probabilities
|
| 108 |
+
top1_probs = sorted_probs[:, 0]
|
| 109 |
+
top2_probs = sorted_probs[:, 1]
|
| 110 |
+
# Calculate confidence as top1 - top2
|
| 111 |
+
confidence = top1_probs - top2_probs
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
if neg_entropy:
|
| 115 |
+
if use_original_confidence:
|
| 116 |
+
epsilon = 1e-10
|
| 117 |
+
log_probs = torch.log(original_probs + epsilon)
|
| 118 |
+
confidence = torch.sum(original_probs * log_probs, dim=-1)
|
| 119 |
+
else:
|
| 120 |
+
epsilon = 1e-10
|
| 121 |
+
log_probs = torch.log(probs + epsilon)
|
| 122 |
+
confidence = torch.sum(probs * log_probs, dim=-1)
|
| 123 |
+
|
| 124 |
+
return confidence, x0
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
@dataclass
|
| 128 |
+
class DimpleModelOutput(ModelOutput):
|
| 129 |
+
sequences: torch.LongTensor = None
|
| 130 |
+
history: Optional[Tuple[torch.FloatTensor]] = None
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class DimpleGenerationConfig(GenerationConfig):
|
| 134 |
+
def __init__(self, **kwargs):
|
| 135 |
+
# cache parameter
|
| 136 |
+
self.use_cache: bool = kwargs.pop("use_cache", False)
|
| 137 |
+
# general generation parameter
|
| 138 |
+
self.temperature: float = kwargs.pop("temperature", 0.0)
|
| 139 |
+
self.top_p: Optional[float] = kwargs.pop("top_p", None)
|
| 140 |
+
self.top_k: Optional[int] = kwargs.pop("top_k", None)
|
| 141 |
+
self.max_length = kwargs.pop("max_length", 20)
|
| 142 |
+
self.max_new_tokens = kwargs.pop("max_new_tokens", None)
|
| 143 |
+
# diffusion specific params
|
| 144 |
+
self.eps: float = kwargs.pop("eps", 1e-3)
|
| 145 |
+
self.steps: int = kwargs.pop("steps", 512)
|
| 146 |
+
self.alg: str = kwargs.pop("alg", 'origin')
|
| 147 |
+
self.alg_temp: Optional[float] = kwargs.pop("alg_temp", None)
|
| 148 |
+
self.alg_p_threshold: Optional[float] = kwargs.pop("alg_p_threshold", None)
|
| 149 |
+
# highly recommended to be True!
|
| 150 |
+
self.use_original_confidence: Optional[bool] = kwargs.pop("use_original_confidence", True)
|
| 151 |
+
# dim or dream.
|
| 152 |
+
self.decoding_pipeline: Optional[str] = kwargs.pop("decoding_pipeline", "dim")
|
| 153 |
+
|
| 154 |
+
# Parameters that define the output variables of `generate`
|
| 155 |
+
self.num_return_sequences: int = kwargs.pop("num_return_sequences", 1)
|
| 156 |
+
self.return_dict_in_generate: bool = kwargs.pop("return_dict_in_generate", False)
|
| 157 |
+
self.output_history: bool = kwargs.pop("output_history", False)
|
| 158 |
+
|
| 159 |
+
# Special tokens that can be used at generation time
|
| 160 |
+
self.mask_token_id = kwargs.pop("mask_token_id", None)
|
| 161 |
+
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
| 162 |
+
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
| 163 |
+
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
| 164 |
+
|
| 165 |
+
# Wild card
|
| 166 |
+
self.generation_kwargs = kwargs.pop("generation_kwargs", {})
|
| 167 |
+
|
| 168 |
+
# The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the hub
|
| 169 |
+
# interface.
|
| 170 |
+
self._from_model_config = kwargs.pop("_from_model_config", False)
|
| 171 |
+
self._commit_hash = kwargs.pop("_commit_hash", None)
|
| 172 |
+
self.transformers_version = kwargs.pop("transformers_version", __version__)
|
| 173 |
+
|
| 174 |
+
# Additional attributes without default values
|
| 175 |
+
if not self._from_model_config:
|
| 176 |
+
# we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a
|
| 177 |
+
# model's default configuration file
|
| 178 |
+
for key, value in kwargs.items():
|
| 179 |
+
try:
|
| 180 |
+
setattr(self, key, value)
|
| 181 |
+
except AttributeError as err:
|
| 182 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
| 183 |
+
raise err
|
| 184 |
+
|
| 185 |
+
# Validate the values of the attributes
|
| 186 |
+
self.validate(is_init=True)
|
| 187 |
+
|
| 188 |
+
def validate(self, is_init=False):
|
| 189 |
+
pass
|
| 190 |
+
|
| 191 |
+
class DimpleGenerationMixin:
|
| 192 |
+
# in Dream
|
| 193 |
+
|
| 194 |
+
@staticmethod
|
| 195 |
+
def _expand_inputs_for_generation(
|
| 196 |
+
expand_size: int = 1,
|
| 197 |
+
is_encoder_decoder: bool = False,
|
| 198 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 199 |
+
**model_kwargs,
|
| 200 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
| 201 |
+
pixel_values = model_kwargs.get("pixel_values", None)
|
| 202 |
+
image_grid_thw = model_kwargs.get("image_grid_thw", None)
|
| 203 |
+
if expand_size == 1:
|
| 204 |
+
return GenerationMixin._expand_inputs_for_generation(
|
| 205 |
+
expand_size=expand_size,
|
| 206 |
+
is_encoder_decoder=is_encoder_decoder,
|
| 207 |
+
input_ids=input_ids,
|
| 208 |
+
**model_kwargs
|
| 209 |
+
)
|
| 210 |
+
elif pixel_values is None and image_grid_thw is None:
|
| 211 |
+
return GenerationMixin._expand_inputs_for_generation(
|
| 212 |
+
expand_size=expand_size,
|
| 213 |
+
is_encoder_decoder=is_encoder_decoder,
|
| 214 |
+
input_ids=input_ids,
|
| 215 |
+
**model_kwargs
|
| 216 |
+
)
|
| 217 |
+
else:
|
| 218 |
+
raise ValueError(
|
| 219 |
+
"Does not support expansion for image inputs. "
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
|
| 223 |
+
"""Performs validation related to the resulting generated length"""
|
| 224 |
+
|
| 225 |
+
# Can't throw warnings/exceptions during compilation
|
| 226 |
+
if is_torchdynamo_compiling():
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
# 1. Max length warnings related to poor parameterization
|
| 230 |
+
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
|
| 231 |
+
# 20 is the default max_length of the generation config
|
| 232 |
+
logger.warning_once(
|
| 233 |
+
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
|
| 234 |
+
"generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
|
| 235 |
+
"generation."
|
| 236 |
+
)
|
| 237 |
+
if input_ids_length >= generation_config.max_length:
|
| 238 |
+
input_ids_string = "input_ids"
|
| 239 |
+
raise ValueError(
|
| 240 |
+
f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
|
| 241 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
| 242 |
+
" increasing `max_length` or, better yet, setting `max_new_tokens`."
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
def _prepare_generated_length(
|
| 246 |
+
self,
|
| 247 |
+
generation_config,
|
| 248 |
+
has_default_max_length,
|
| 249 |
+
input_ids_length,
|
| 250 |
+
):
|
| 251 |
+
"""Prepared max and min length in generation configs to avoid clashes between similar attributes"""
|
| 252 |
+
|
| 253 |
+
if generation_config.max_new_tokens is not None:
|
| 254 |
+
if not has_default_max_length and generation_config.max_length is not None:
|
| 255 |
+
logger.warning_once(
|
| 256 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
| 257 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
| 258 |
+
"Please refer to the documentation for more information. "
|
| 259 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
| 260 |
+
)
|
| 261 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_length
|
| 262 |
+
|
| 263 |
+
elif has_default_max_length:
|
| 264 |
+
if generation_config.max_length == DimpleGenerationConfig().max_length:
|
| 265 |
+
generation_config.max_length = generation_config.max_length + input_ids_length
|
| 266 |
+
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
|
| 267 |
+
if max_position_embeddings is not None:
|
| 268 |
+
generation_config.max_length = min(generation_config.max_length, max_position_embeddings)
|
| 269 |
+
|
| 270 |
+
return generation_config
|
| 271 |
+
|
| 272 |
+
def _prepare_generation_config(
|
| 273 |
+
self, generation_config: Optional[DimpleGenerationConfig], **kwargs: Dict
|
| 274 |
+
) -> DimpleGenerationConfig:
|
| 275 |
+
"""
|
| 276 |
+
Prepares the base generation config, then applies any generation configuration options from kwargs. This
|
| 277 |
+
function handles retrocompatibility with respect to configuration files.
|
| 278 |
+
"""
|
| 279 |
+
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
|
| 280 |
+
using_model_generation_config = False
|
| 281 |
+
if generation_config is None:
|
| 282 |
+
generation_config = DimpleGenerationConfig.from_model_config(self.config)
|
| 283 |
+
using_model_generation_config = True
|
| 284 |
+
|
| 285 |
+
# `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
|
| 286 |
+
# will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an
|
| 287 |
+
# exception will be raised in `_validate_model_kwargs`
|
| 288 |
+
if not is_torchdynamo_compiling():
|
| 289 |
+
generation_config = copy.deepcopy(generation_config)
|
| 290 |
+
model_kwargs = generation_config.update(**kwargs)
|
| 291 |
+
# If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model
|
| 292 |
+
if not using_model_generation_config:
|
| 293 |
+
if generation_config.bos_token_id is None:
|
| 294 |
+
generation_config.bos_token_id = self.generation_config.bos_token_id
|
| 295 |
+
if generation_config.eos_token_id is None:
|
| 296 |
+
generation_config.eos_token_id = self.generation_config.eos_token_id
|
| 297 |
+
if generation_config.pad_token_id is None:
|
| 298 |
+
generation_config.pad_token_id = self.generation_config.pad_token_id
|
| 299 |
+
if generation_config.mask_token_id is None:
|
| 300 |
+
generation_config.mask_token_id = self.generation_config.mask_token_id
|
| 301 |
+
|
| 302 |
+
return generation_config, model_kwargs
|
| 303 |
+
|
| 304 |
+
def _prepare_special_tokens(
|
| 305 |
+
self,
|
| 306 |
+
generation_config: DimpleGenerationConfig,
|
| 307 |
+
device: Optional[Union[torch.device, str]] = None,
|
| 308 |
+
):
|
| 309 |
+
"""
|
| 310 |
+
Prepares the special tokens for generation, overwriting the generation config with their processed versions
|
| 311 |
+
converted to tensor.
|
| 312 |
+
|
| 313 |
+
Note that `generation_config` is changed in place and stops being serializable after this method is called.
|
| 314 |
+
That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
|
| 315 |
+
function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
|
| 316 |
+
"""
|
| 317 |
+
|
| 318 |
+
# Convert special tokens to tensors
|
| 319 |
+
def _tensor_or_none(token, device=None):
|
| 320 |
+
if token is None:
|
| 321 |
+
return token
|
| 322 |
+
|
| 323 |
+
device = device if device is not None else self.device
|
| 324 |
+
if isinstance(token, torch.Tensor):
|
| 325 |
+
return token.to(device)
|
| 326 |
+
return torch.tensor(token, device=device, dtype=torch.long)
|
| 327 |
+
|
| 328 |
+
bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device)
|
| 329 |
+
eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device)
|
| 330 |
+
pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device)
|
| 331 |
+
mask_token_tensor = _tensor_or_none(generation_config.mask_token_id, device=device)
|
| 332 |
+
|
| 333 |
+
# We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
|
| 334 |
+
if eos_token_tensor is not None and eos_token_tensor.ndim == 0:
|
| 335 |
+
eos_token_tensor = eos_token_tensor.unsqueeze(0)
|
| 336 |
+
|
| 337 |
+
# Set pad token if unset (and there are conditions to do so)
|
| 338 |
+
if pad_token_tensor is None and eos_token_tensor is not None:
|
| 339 |
+
pad_token_tensor = eos_token_tensor[0]
|
| 340 |
+
logger.warning_once(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.")
|
| 341 |
+
|
| 342 |
+
# Update generation config with the updated special tokens tensors
|
| 343 |
+
# NOTE: this must be written into a different attribute name than the one holding the original special tokens
|
| 344 |
+
# (in their non-tensor form), in order to enable end-to-end compilation. See
|
| 345 |
+
# https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations
|
| 346 |
+
generation_config._bos_token_tensor = bos_token_tensor
|
| 347 |
+
generation_config._eos_token_tensor = eos_token_tensor
|
| 348 |
+
generation_config._pad_token_tensor = pad_token_tensor
|
| 349 |
+
generation_config._mask_token_tensor = mask_token_tensor
|
| 350 |
+
def _mask_pad_inputs_for_generation(
|
| 351 |
+
self,
|
| 352 |
+
input_ids: torch.LongTensor,
|
| 353 |
+
generation_config: DimpleGenerationConfig,
|
| 354 |
+
**model_kwargs,
|
| 355 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
| 356 |
+
"""
|
| 357 |
+
pad tokens in the input ids and attentions for generation. This is used to insert mask tokens into the input_ids
|
| 358 |
+
"""
|
| 359 |
+
max_length = generation_config.max_length
|
| 360 |
+
mask_token_id = generation_config.mask_token_id
|
| 361 |
+
attention_mask = model_kwargs.get("attention_mask", None)
|
| 362 |
+
|
| 363 |
+
# pad input_ids to max_length
|
| 364 |
+
input_ids = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id)
|
| 365 |
+
if attention_mask is not None:
|
| 366 |
+
attention_mask = F.pad(attention_mask, (0, max_length - attention_mask.shape[1]), value=1.0)
|
| 367 |
+
model_kwargs["attention_mask"] = attention_mask
|
| 368 |
+
else:
|
| 369 |
+
raise ValueError(
|
| 370 |
+
"attention_mask should be provided. "
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
return input_ids, model_kwargs
|
| 374 |
+
|
| 375 |
+
def compare_past_key_values(self, old, new):
|
| 376 |
+
if len(old) != len(new):
|
| 377 |
+
return False
|
| 378 |
+
for (k_old, v_old), (k_new, v_new) in zip(old, new):
|
| 379 |
+
if not (torch.equal(k_old, k_new) and torch.equal(v_old, v_new)):
|
| 380 |
+
return False
|
| 381 |
+
return True
|
| 382 |
+
|
| 383 |
+
def _update_model_kwargs_for_generation(
|
| 384 |
+
self,
|
| 385 |
+
outputs: ModelOutput,
|
| 386 |
+
model_kwargs: Dict[str, Any]
|
| 387 |
+
) -> Dict[str, Any]:
|
| 388 |
+
# update past_key_values keeping its naming used in model code
|
| 389 |
+
if model_kwargs["use_cache"]:
|
| 390 |
+
assert outputs.past_key_values is not None, "Cache should not be None if use_cache is True"
|
| 391 |
+
assert outputs.past_key_values.get_seq_length() == model_kwargs["total_sequence_length"], \
|
| 392 |
+
f"Cache length {outputs.past_key_values.get_seq_length()} should be equal to the total sequence length {model_kwargs['total_sequence_length']}"
|
| 393 |
+
# The crop operation requires "left padding for batch processing"
|
| 394 |
+
outputs.past_key_values.crop(max_length = model_kwargs["prompt_length"])
|
| 395 |
+
# if model_kwargs["past_key_values"].get_seq_length() > 0:
|
| 396 |
+
# assert self.compare_past_key_values(model_kwargs["past_key_values"], outputs.past_key_values), \
|
| 397 |
+
# f"Cache {model_kwargs['past_key_values']} should be equal to the new cache {outputs.past_key_values}"
|
| 398 |
+
else:
|
| 399 |
+
assert outputs.past_key_values is None, "Cache should be None if use_cache is False"
|
| 400 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
| 401 |
+
|
| 402 |
+
# update cache position
|
| 403 |
+
if model_kwargs["use_cache"]:
|
| 404 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-(model_kwargs["total_sequence_length"] - model_kwargs["prompt_length"]):]
|
| 405 |
+
else:
|
| 406 |
+
assert model_kwargs["cache_position"] is None, "Cache position should be None if use_cache is False"
|
| 407 |
+
|
| 408 |
+
if model_kwargs.get("rope_deltas", None) is not None:
|
| 409 |
+
assert torch.equal(
|
| 410 |
+
model_kwargs["rope_deltas"], outputs.rope_deltas), \
|
| 411 |
+
f"Rope deltas {model_kwargs['rope_deltas']} should be equal to the new rope deltas {outputs.rope_deltas}"
|
| 412 |
+
model_kwargs["rope_deltas"] = outputs.rope_deltas
|
| 413 |
+
return model_kwargs
|
| 414 |
+
|
| 415 |
+
@torch.no_grad()
|
| 416 |
+
def diffusion_generate(
|
| 417 |
+
self,
|
| 418 |
+
inputs: Optional[torch.Tensor] = None,
|
| 419 |
+
generation_config: Optional[DimpleGenerationConfig] = None,
|
| 420 |
+
# tokenizer=None, # only for debug, need to be removed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
| 421 |
+
**kwargs,
|
| 422 |
+
) -> Union[DimpleModelOutput, torch.LongTensor]:
|
| 423 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
| 424 |
+
generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs)
|
| 425 |
+
generation_tokens_hook_func = model_kwargs.pop("generation_tokens_hook_func", lambda step, x, logits: x)
|
| 426 |
+
generation_logits_hook_func = model_kwargs.pop("generation_logits_hook_func", lambda step, x, logits: logits)
|
| 427 |
+
|
| 428 |
+
# 2. Define model inputs
|
| 429 |
+
assert inputs is not None
|
| 430 |
+
input_ids = inputs
|
| 431 |
+
device = input_ids.device
|
| 432 |
+
attention_mask = model_kwargs.get("attention_mask", None)
|
| 433 |
+
self._prepare_special_tokens(generation_config, device=device)
|
| 434 |
+
|
| 435 |
+
# 3. Prepare `max_length`.
|
| 436 |
+
input_ids_length = input_ids.shape[-1]
|
| 437 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
| 438 |
+
generation_config = self._prepare_generated_length(
|
| 439 |
+
generation_config=generation_config,
|
| 440 |
+
has_default_max_length=has_default_max_length,
|
| 441 |
+
input_ids_length=input_ids_length,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
|
| 445 |
+
|
| 446 |
+
# 4. Check input_ids
|
| 447 |
+
if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type:
|
| 448 |
+
logger.warning_once(
|
| 449 |
+
"You are calling .generate() with the `input_ids` being on a device type different"
|
| 450 |
+
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
| 451 |
+
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
| 452 |
+
" Please make sure that you have put `input_ids` to the"
|
| 453 |
+
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
| 454 |
+
" running `.generate()`."
|
| 455 |
+
)
|
| 456 |
+
if (
|
| 457 |
+
hasattr(generation_config, "pad_token_id") and
|
| 458 |
+
torch.any(input_ids == generation_config.pad_token_id) and
|
| 459 |
+
attention_mask is None
|
| 460 |
+
):
|
| 461 |
+
logger.warning_once(
|
| 462 |
+
"Padding was detected but no attention mask is passed here. For correct "
|
| 463 |
+
"generation results, please set `attention_mask` when batch-padding inputs."
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
# 5. initialize kv cache
|
| 467 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
| 468 |
+
if model_kwargs["use_cache"]:
|
| 469 |
+
model_kwargs["past_key_values"] = DynamicCache()
|
| 470 |
+
model_kwargs["prompt_length"] = input_ids.shape[1] - 1
|
| 471 |
+
else:
|
| 472 |
+
model_kwargs["past_key_values"] = None
|
| 473 |
+
model_kwargs["prompt_length"] = input_ids.shape[1] - 1
|
| 474 |
+
|
| 475 |
+
# 6. Expand inputs for generation
|
| 476 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
| 477 |
+
input_ids=input_ids,
|
| 478 |
+
expand_size=generation_config.num_return_sequences,
|
| 479 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
| 480 |
+
**model_kwargs,
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
# 7. pad mask for generation
|
| 484 |
+
input_ids, model_kwargs = self._mask_pad_inputs_for_generation(
|
| 485 |
+
input_ids=input_ids,
|
| 486 |
+
generation_config=generation_config,
|
| 487 |
+
**model_kwargs,
|
| 488 |
+
)
|
| 489 |
+
model_kwargs["total_sequence_length"] = input_ids.shape[1]
|
| 490 |
+
|
| 491 |
+
# 8. initialize cache position
|
| 492 |
+
if model_kwargs["use_cache"]:
|
| 493 |
+
model_kwargs["cache_position"] = torch.ones_like(input_ids[0, :], dtype=torch.int64).cumsum(0) - 1
|
| 494 |
+
else:
|
| 495 |
+
model_kwargs["cache_position"] = None
|
| 496 |
+
# 9. Generate
|
| 497 |
+
result = self._sample(
|
| 498 |
+
input_ids,
|
| 499 |
+
generation_config=generation_config,
|
| 500 |
+
generation_tokens_hook_func=generation_tokens_hook_func,
|
| 501 |
+
generation_logits_hook_func=generation_logits_hook_func,
|
| 502 |
+
# tokenizer=tokenizer, # only for debug, need to be removed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
| 503 |
+
**model_kwargs,
|
| 504 |
+
)
|
| 505 |
+
return result
|
| 506 |
+
|
| 507 |
+
def _sample(
|
| 508 |
+
self,
|
| 509 |
+
input_ids: torch.LongTensor,
|
| 510 |
+
generation_config: DimpleGenerationConfig,
|
| 511 |
+
generation_tokens_hook_func,
|
| 512 |
+
generation_logits_hook_func,
|
| 513 |
+
# tokenizer=None, # only for debug, need to be removed !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
| 514 |
+
**model_kwargs,
|
| 515 |
+
) -> Union[DimpleModelOutput, torch.LongTensor]:
|
| 516 |
+
# init values
|
| 517 |
+
output_history = generation_config.output_history
|
| 518 |
+
return_dict_in_generate = generation_config.return_dict_in_generate
|
| 519 |
+
max_length = generation_config.max_length
|
| 520 |
+
mask_token_id = generation_config.mask_token_id
|
| 521 |
+
steps = generation_config.steps
|
| 522 |
+
eps = generation_config.eps
|
| 523 |
+
alg = generation_config.alg
|
| 524 |
+
alg_temp = generation_config.alg_temp
|
| 525 |
+
alg_p_threshold = generation_config.alg_p_threshold
|
| 526 |
+
decoding_pipeline = generation_config.decoding_pipeline
|
| 527 |
+
use_original_confidence = generation_config.use_original_confidence
|
| 528 |
+
temperature = generation_config.temperature
|
| 529 |
+
top_p = generation_config.top_p
|
| 530 |
+
top_k = generation_config.top_k
|
| 531 |
+
attention_mask = model_kwargs.get("attention_mask", None)
|
| 532 |
+
attention_mask_4d = model_kwargs.get("attention_mask_4d", None)
|
| 533 |
+
|
| 534 |
+
histories = [] if (return_dict_in_generate and output_history) else None
|
| 535 |
+
|
| 536 |
+
timesteps = torch.linspace(1, eps, steps + 1, device=input_ids.device)
|
| 537 |
+
|
| 538 |
+
input_ids = generation_tokens_hook_func(None, input_ids, None)
|
| 539 |
+
|
| 540 |
+
num_total_mask = (input_ids == mask_token_id).sum()
|
| 541 |
+
|
| 542 |
+
# this allows user-defined token control of the intermediate steps
|
| 543 |
+
for i in range(steps):
|
| 544 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 545 |
+
x = model_inputs.pop("input_ids").clone()
|
| 546 |
+
mask_index = (x == mask_token_id)
|
| 547 |
+
outputs = self(x, **model_inputs)
|
| 548 |
+
|
| 549 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
| 550 |
+
|
| 551 |
+
logits = outputs.logits
|
| 552 |
+
assert torch.all(x[:,0] != mask_token_id), "The first token should not be a mask token"
|
| 553 |
+
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
|
| 554 |
+
|
| 555 |
+
# this allows user-defined logits control of the intermediate steps
|
| 556 |
+
logits = generation_logits_hook_func(i, x, logits)
|
| 557 |
+
|
| 558 |
+
mask_logits = logits[mask_index]
|
| 559 |
+
|
| 560 |
+
if decoding_pipeline == 'dream':
|
| 561 |
+
# raise NotImplementedError("Dream decoding pipeline is copied from the original code.")
|
| 562 |
+
t = timesteps[i]
|
| 563 |
+
s = timesteps[i + 1]
|
| 564 |
+
|
| 565 |
+
if alg == 'origin':
|
| 566 |
+
p_transfer = 1 - s / t if i < steps - 1 else 1
|
| 567 |
+
x0 = torch.zeros_like(x[mask_index], device=self.device, dtype=torch.long) + mask_token_id
|
| 568 |
+
transfer_index_t_s = torch.rand(*x0.shape, device=self.device) < p_transfer
|
| 569 |
+
_, x0[transfer_index_t_s]= sample_tokens(mask_logits[transfer_index_t_s], temperature=temperature, top_p=top_p, top_k=top_k, use_original_confidence = False)
|
| 570 |
+
x[mask_index] = x0.clone()
|
| 571 |
+
elif alg == 'autoregressive':
|
| 572 |
+
x0 = torch.zeros_like(x[mask_index], device=self.device, dtype=torch.long) + mask_token_id
|
| 573 |
+
transfer_index_t_s = torch.zeros(*x.shape, device=self.device, dtype=torch.bool)
|
| 574 |
+
transfer_index_t_s[torch.arange(x.shape[0]), mask_index.max(dim = 1)[1]] = True
|
| 575 |
+
mask_transfer_index_t_s = transfer_index_t_s[mask_index]
|
| 576 |
+
_, x0[mask_transfer_index_t_s]= sample_tokens(mask_logits[mask_transfer_index_t_s], temperature=temperature, top_p=top_p, top_k=top_k, use_original_confidence = False)
|
| 577 |
+
x[mask_index] = x0.clone()
|
| 578 |
+
else:
|
| 579 |
+
if alg == 'maskgit_plus':
|
| 580 |
+
confidence, x0 = sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, use_original_confidence = False)
|
| 581 |
+
elif alg == 'topk_margin':
|
| 582 |
+
confidence, x0 = sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, margin_confidence=True, use_original_confidence = False)
|
| 583 |
+
elif alg == 'entropy':
|
| 584 |
+
confidence, x0 = sample_tokens(mask_logits, temperature, top_p=top_p, top_k=top_k, neg_entropy=True, use_original_confidence = False)
|
| 585 |
+
else:
|
| 586 |
+
raise RuntimeError(f"Unknown alg: {alg}")
|
| 587 |
+
num_mask_token = mask_index.sum()
|
| 588 |
+
number_transfer_tokens = int(num_mask_token * (1 - s / t)) if i < steps - 1 else num_mask_token
|
| 589 |
+
if number_transfer_tokens > 0:
|
| 590 |
+
if alg_temp is None or alg_temp == 0:
|
| 591 |
+
_, transfer_index = torch.topk(confidence, number_transfer_tokens)
|
| 592 |
+
else:
|
| 593 |
+
confidence = confidence / alg_temp
|
| 594 |
+
confidence = F.softmax(confidence, dim=-1)
|
| 595 |
+
transfer_index = torch.multinomial(confidence, num_samples=number_transfer_tokens)
|
| 596 |
+
x0_ = torch.zeros_like(x0, device=self.device, dtype=torch.long) + mask_token_id
|
| 597 |
+
x0_[transfer_index] = x0[transfer_index].clone()
|
| 598 |
+
x[mask_index] = x0_
|
| 599 |
+
|
| 600 |
+
elif decoding_pipeline == 'dim':
|
| 601 |
+
|
| 602 |
+
if alg == 'origin':
|
| 603 |
+
confidence, x0= sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, use_original_confidence = use_original_confidence)
|
| 604 |
+
elif alg == 'origin-ratio':
|
| 605 |
+
confidence, x0= sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, use_original_confidence = use_original_confidence)
|
| 606 |
+
elif alg == 'autoregressive':
|
| 607 |
+
confidence, x0= sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, use_original_confidence = use_original_confidence)
|
| 608 |
+
elif alg == 'maskgit_plus':
|
| 609 |
+
confidence, x0 = sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, use_original_confidence = use_original_confidence)
|
| 610 |
+
elif alg == 'topk_margin':
|
| 611 |
+
confidence, x0 = sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, margin_confidence=True, use_original_confidence = use_original_confidence)
|
| 612 |
+
elif alg == 'entropy':
|
| 613 |
+
confidence, x0 = sample_tokens(mask_logits, temperature, top_p=top_p, top_k=top_k, neg_entropy=True, use_original_confidence = use_original_confidence)
|
| 614 |
+
else:
|
| 615 |
+
raise RuntimeError(f"Unknown alg: {alg}")
|
| 616 |
+
|
| 617 |
+
p_threshold_transfer_index_sum = 0
|
| 618 |
+
if alg_p_threshold is not None and alg_p_threshold > 0:
|
| 619 |
+
if i == steps - 1:
|
| 620 |
+
# all tokens should be transfered
|
| 621 |
+
transfer_index = torch.ones_like(confidence, device=self.device, dtype=torch.bool)
|
| 622 |
+
else:
|
| 623 |
+
transfer_index = confidence > alg_p_threshold
|
| 624 |
+
p_threshold_transfer_index_sum = transfer_index.sum()
|
| 625 |
+
if p_threshold_transfer_index_sum == 0:
|
| 626 |
+
pass
|
| 627 |
+
else:
|
| 628 |
+
x0_ = torch.zeros_like(x0, device=self.device, dtype=torch.long) + mask_token_id
|
| 629 |
+
x0_[transfer_index] = x0[transfer_index].clone()
|
| 630 |
+
x[mask_index] = x0_.clone()
|
| 631 |
+
else:
|
| 632 |
+
pass
|
| 633 |
+
|
| 634 |
+
if p_threshold_transfer_index_sum == 0:
|
| 635 |
+
|
| 636 |
+
num_cur_mask = mask_index.sum()
|
| 637 |
+
ratio_cur_mask = num_cur_mask / num_total_mask
|
| 638 |
+
if ratio_cur_mask <= timesteps[-1]:
|
| 639 |
+
raise ValueError(f"ratio_cur_mask {ratio_cur_mask} should be larger than timesteps[-1] {timesteps[-1]}")
|
| 640 |
+
|
| 641 |
+
valid_s_indices = (timesteps < ratio_cur_mask).nonzero(as_tuple=True)[0]
|
| 642 |
+
s_idx_start = max(valid_s_indices.min().item(), i + 1)
|
| 643 |
+
t = ratio_cur_mask
|
| 644 |
+
for s_idx in range(s_idx_start, steps + 1):
|
| 645 |
+
s = timesteps[s_idx]
|
| 646 |
+
number_transfer_tokens = int(num_cur_mask * (1 - s / t)) if s > timesteps[-1] else num_cur_mask
|
| 647 |
+
if number_transfer_tokens >= 1:
|
| 648 |
+
break
|
| 649 |
+
else:
|
| 650 |
+
continue
|
| 651 |
+
|
| 652 |
+
if alg == 'origin':
|
| 653 |
+
x0_ = torch.zeros_like(x[mask_index], device=self.device, dtype=torch.long) + mask_token_id
|
| 654 |
+
transfer_index_t_s = torch.randperm(x0_.shape[0])[:number_transfer_tokens]
|
| 655 |
+
x0_[transfer_index_t_s]= x0[transfer_index_t_s].clone()
|
| 656 |
+
x[mask_index] = x0_.clone()
|
| 657 |
+
elif alg == 'origin-ratio':
|
| 658 |
+
p_transfer = 1 - s / t if s > timesteps[-1] else 1
|
| 659 |
+
x0_ = torch.zeros_like(x[mask_index], device=self.device, dtype=torch.long) + mask_token_id
|
| 660 |
+
transfer_index_t_s = torch.rand(*x0_.shape, device=self.device) < p_transfer
|
| 661 |
+
x0_[transfer_index_t_s]= x0[transfer_index_t_s].clone()
|
| 662 |
+
x[mask_index] = x0_.clone()
|
| 663 |
+
elif alg == 'autoregressive':
|
| 664 |
+
x0_ = torch.zeros_like(x[mask_index], device=self.device, dtype=torch.long) + mask_token_id
|
| 665 |
+
transfer_index_t_s = torch.zeros(*x.shape, device=self.device, dtype=torch.bool)
|
| 666 |
+
transfer_index_t_s[torch.arange(x.shape[0]), mask_index.max(dim = 1)[1]] = True
|
| 667 |
+
mask_transfer_index_t_s = transfer_index_t_s[mask_index]
|
| 668 |
+
x0_[mask_transfer_index_t_s]= x0[mask_transfer_index_t_s].clone()
|
| 669 |
+
x[mask_index] = x0_.clone()
|
| 670 |
+
elif alg in ['maskgit_plus', 'topk_margin', 'entropy']:
|
| 671 |
+
assert number_transfer_tokens > 0, f"number_transfer_tokens {number_transfer_tokens} should be larger than 0"
|
| 672 |
+
if alg_temp is None or alg_temp == 0:
|
| 673 |
+
_, transfer_index = torch.topk(confidence, number_transfer_tokens)
|
| 674 |
+
else:
|
| 675 |
+
confidence = confidence / alg_temp
|
| 676 |
+
confidence = F.softmax(confidence, dim=-1)
|
| 677 |
+
transfer_index = torch.multinomial(confidence, num_samples=number_transfer_tokens)
|
| 678 |
+
x0_ = torch.zeros_like(x0, device=self.device, dtype=torch.long) + mask_token_id
|
| 679 |
+
x0_[transfer_index] = x0[transfer_index].clone()
|
| 680 |
+
x[mask_index] = x0_.clone()
|
| 681 |
+
else:
|
| 682 |
+
raise ValueError(f"Unknown decoding pipeline: {decoding_pipeline}")
|
| 683 |
+
|
| 684 |
+
# this allows user-defined token control of the intermediate steps
|
| 685 |
+
x = generation_tokens_hook_func(i, x, logits)
|
| 686 |
+
|
| 687 |
+
answer_token_length = model_kwargs['total_sequence_length'] - model_kwargs['prompt_length']
|
| 688 |
+
if x.shape[1] == model_kwargs['total_sequence_length']:
|
| 689 |
+
assert torch.all(x[:,:model_kwargs['prompt_length']+1] == input_ids[:,:model_kwargs['prompt_length']+1]), "prompt tokens should not be changed"
|
| 690 |
+
elif x.shape[1] == answer_token_length:
|
| 691 |
+
assert torch.all(
|
| 692 |
+
x[:,0] == input_ids[:,-answer_token_length]), "The first token in x should be the same as the input_ids"
|
| 693 |
+
input_ids[:, -answer_token_length:] = x[:, -answer_token_length:].clone()
|
| 694 |
+
|
| 695 |
+
if histories is not None:
|
| 696 |
+
histories.append(input_ids.clone())
|
| 697 |
+
|
| 698 |
+
if decoding_pipeline == 'dim' and torch.all(input_ids != mask_token_id):
|
| 699 |
+
break
|
| 700 |
+
|
| 701 |
+
if return_dict_in_generate:
|
| 702 |
+
return DimpleModelOutput(
|
| 703 |
+
sequences=input_ids,
|
| 704 |
+
history=histories,
|
| 705 |
+
)
|
| 706 |
+
else:
|
| 707 |
+
return input_ids
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:329fd943debbe8f1b03c3e369d73a93b242764029209fd2388e753e6bfbb1830
|
| 3 |
+
size 4968243304
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0b89a4573508d322a95995debd730ab11f6ec7d0f3801e72bf8e6bedcc6767ce
|
| 3 |
+
size 4991495816
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8ddf4e01077c290e08a59d5d6b017b74e175cefff6194707ea0ba10437c2615
|
| 3 |
+
size 4932751040
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d351f0dc11b8f913c5016b453ac3e2eb1b1603ce9b3650aec2666312f23e1dc1
|
| 3 |
+
size 1743319336
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16635727872
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"img_projector.linear_1.bias": "model-00004-of-00004.safetensors",
|
| 7 |
+
"img_projector.linear_1.weight": "model-00004-of-00004.safetensors",
|
| 8 |
+
"img_projector.linear_2.bias": "model-00004-of-00004.safetensors",
|
| 9 |
+
"img_projector.linear_2.weight": "model-00004-of-00004.safetensors",
|
| 10 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 11 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 33 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 34 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 35 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 131 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 153 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 155 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 165 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 166 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 167 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 260 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 261 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 262 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 263 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 297 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 299 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 308 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 309 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 310 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 311 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 320 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 332 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 333 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 345 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 346 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 347 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 348 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
| 349 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 350 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 352 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 353 |
+
"visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 354 |
+
"visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 355 |
+
"visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 356 |
+
"visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 358 |
+
"visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
| 360 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 364 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 365 |
+
"visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 366 |
+
"visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 367 |
+
"visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 368 |
+
"visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 369 |
+
"visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 370 |
+
"visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 371 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
| 372 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
| 373 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 374 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 375 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 376 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 377 |
+
"visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 378 |
+
"visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 379 |
+
"visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 380 |
+
"visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 381 |
+
"visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 382 |
+
"visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 383 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
| 384 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
| 385 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 386 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 387 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 388 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 389 |
+
"visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 390 |
+
"visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 391 |
+
"visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 392 |
+
"visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 393 |
+
"visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 394 |
+
"visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 395 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
| 396 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
| 397 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 398 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 400 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 401 |
+
"visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 402 |
+
"visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 403 |
+
"visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 404 |
+
"visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 405 |
+
"visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 406 |
+
"visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 407 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
| 408 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
| 409 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 410 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 411 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 412 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 413 |
+
"visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 414 |
+
"visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 415 |
+
"visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 416 |
+
"visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 417 |
+
"visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 418 |
+
"visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 419 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
| 420 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
| 421 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 424 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 425 |
+
"visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 426 |
+
"visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 427 |
+
"visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 428 |
+
"visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 429 |
+
"visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 430 |
+
"visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 431 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
| 432 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
| 433 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 434 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 435 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 436 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 437 |
+
"visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 438 |
+
"visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 439 |
+
"visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 440 |
+
"visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 441 |
+
"visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 442 |
+
"visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 443 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
| 444 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
| 445 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 446 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 447 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 448 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 449 |
+
"visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 450 |
+
"visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 451 |
+
"visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 452 |
+
"visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 453 |
+
"visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 454 |
+
"visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 455 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
| 456 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
| 457 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 458 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 459 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 460 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 461 |
+
"visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 462 |
+
"visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 463 |
+
"visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 464 |
+
"visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 465 |
+
"visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 466 |
+
"visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 467 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
| 468 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
| 469 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 470 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 471 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 472 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 473 |
+
"visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 474 |
+
"visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 475 |
+
"visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 476 |
+
"visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 477 |
+
"visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 478 |
+
"visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 479 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
| 480 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
| 481 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 482 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 483 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 484 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 485 |
+
"visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 486 |
+
"visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 487 |
+
"visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 488 |
+
"visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 489 |
+
"visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 490 |
+
"visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 491 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
| 492 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
| 493 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 494 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 495 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 496 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 497 |
+
"visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 498 |
+
"visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 499 |
+
"visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 500 |
+
"visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 501 |
+
"visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 502 |
+
"visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 503 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
| 504 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
| 505 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 506 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 507 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 508 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 509 |
+
"visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 510 |
+
"visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 511 |
+
"visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 512 |
+
"visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 513 |
+
"visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 514 |
+
"visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 515 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
| 516 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
| 517 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 518 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 519 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 520 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 521 |
+
"visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 522 |
+
"visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 523 |
+
"visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 524 |
+
"visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 525 |
+
"visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 526 |
+
"visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 527 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
| 528 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
| 529 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 530 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 531 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 532 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 533 |
+
"visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 534 |
+
"visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 535 |
+
"visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 536 |
+
"visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 537 |
+
"visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 538 |
+
"visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 539 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
| 540 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
| 541 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 542 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 543 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 544 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 545 |
+
"visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 546 |
+
"visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 547 |
+
"visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 548 |
+
"visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 549 |
+
"visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 550 |
+
"visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 551 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
| 552 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
| 553 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 554 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 555 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 556 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 557 |
+
"visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 558 |
+
"visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 559 |
+
"visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 560 |
+
"visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 561 |
+
"visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 562 |
+
"visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 563 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
| 564 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
| 565 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 566 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 567 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 568 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 569 |
+
"visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 570 |
+
"visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 571 |
+
"visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 572 |
+
"visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 573 |
+
"visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 574 |
+
"visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 575 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
| 576 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
| 577 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 578 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 579 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 580 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 581 |
+
"visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 582 |
+
"visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 583 |
+
"visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 584 |
+
"visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 585 |
+
"visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 586 |
+
"visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 587 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
| 588 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
| 589 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 590 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 591 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 592 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 593 |
+
"visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 594 |
+
"visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 595 |
+
"visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 596 |
+
"visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 597 |
+
"visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 598 |
+
"visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 599 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
|
| 600 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
|
| 601 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 602 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 603 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 604 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 605 |
+
"visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 606 |
+
"visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 607 |
+
"visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 608 |
+
"visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 609 |
+
"visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 610 |
+
"visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 611 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
|
| 612 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
|
| 613 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 614 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 615 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 616 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 617 |
+
"visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 618 |
+
"visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 619 |
+
"visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 620 |
+
"visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 621 |
+
"visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 622 |
+
"visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 623 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
|
| 624 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
|
| 625 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 626 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 627 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 628 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 629 |
+
"visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 630 |
+
"visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 631 |
+
"visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 632 |
+
"visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 633 |
+
"visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 634 |
+
"visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 635 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
| 636 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
| 637 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 638 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 639 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 640 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 641 |
+
"visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 642 |
+
"visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 643 |
+
"visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 644 |
+
"visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 645 |
+
"visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 646 |
+
"visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 647 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
|
| 648 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
|
| 649 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 650 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 651 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 652 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 653 |
+
"visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 654 |
+
"visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 655 |
+
"visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 656 |
+
"visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 657 |
+
"visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 658 |
+
"visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 659 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
|
| 660 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
|
| 661 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 662 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 663 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 664 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 665 |
+
"visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 666 |
+
"visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 667 |
+
"visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 668 |
+
"visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 669 |
+
"visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 670 |
+
"visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 671 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
| 672 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
| 673 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 674 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 675 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 676 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 677 |
+
"visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 678 |
+
"visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 679 |
+
"visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 680 |
+
"visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 681 |
+
"visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 682 |
+
"visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 683 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
| 684 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
| 685 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 686 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 687 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 688 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 689 |
+
"visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 690 |
+
"visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 691 |
+
"visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 692 |
+
"visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 693 |
+
"visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 694 |
+
"visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 695 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
| 696 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
| 697 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 698 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 699 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 700 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 701 |
+
"visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 702 |
+
"visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 703 |
+
"visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 704 |
+
"visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 705 |
+
"visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 706 |
+
"visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 707 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
| 708 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
| 709 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 710 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 711 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 712 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 713 |
+
"visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 714 |
+
"visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 715 |
+
"visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 716 |
+
"visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 717 |
+
"visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 718 |
+
"visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 719 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
| 720 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
| 721 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 722 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 723 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 724 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 725 |
+
"visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 726 |
+
"visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 727 |
+
"visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 728 |
+
"visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 729 |
+
"visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 730 |
+
"visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 731 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
| 732 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
| 733 |
+
"visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
|
| 734 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
|
| 735 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
|
| 736 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
|
| 737 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
|
| 738 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
|
| 739 |
+
}
|
| 740 |
+
}
|
modeling_dimple.py
ADDED
|
@@ -0,0 +1,1872 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dimple team and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""PyTorch Dimple model."""
|
| 21 |
+
|
| 22 |
+
import math, os
|
| 23 |
+
from dataclasses import dataclass
|
| 24 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn as nn
|
| 28 |
+
import torch.nn.functional as F
|
| 29 |
+
import torch.utils.checkpoint
|
| 30 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
| 31 |
+
|
| 32 |
+
from transformers.activations import ACT2FN
|
| 33 |
+
from transformers.cache_utils import Cache, SlidingWindowCache, StaticCache, DynamicCache
|
| 34 |
+
from transformers.modeling_outputs import (
|
| 35 |
+
BaseModelOutputWithPast,
|
| 36 |
+
ModelOutput,
|
| 37 |
+
BaseModelOutput,
|
| 38 |
+
MaskedLMOutput,
|
| 39 |
+
)
|
| 40 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 41 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 42 |
+
from transformers.utils import (
|
| 43 |
+
add_start_docstrings,
|
| 44 |
+
add_start_docstrings_to_model_forward,
|
| 45 |
+
is_flash_attn_2_available,
|
| 46 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 47 |
+
logging,
|
| 48 |
+
replace_return_docstrings,
|
| 49 |
+
)
|
| 50 |
+
from transformers import PretrainedConfig
|
| 51 |
+
|
| 52 |
+
from transformers.modeling_attn_mask_utils import (
|
| 53 |
+
AttentionMaskConverter,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
from .configuration_dimple import DimpleConfig, DimpleVisionConfig
|
| 57 |
+
from .generation_utils import DimpleGenerationMixin, DimpleGenerationConfig
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
if is_flash_attn_2_available():
|
| 61 |
+
from flash_attn import flash_attn_varlen_func
|
| 62 |
+
|
| 63 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 64 |
+
else:
|
| 65 |
+
flash_attn_varlen_func = None
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
logger = logging.get_logger("Dimple."+__name__)
|
| 69 |
+
|
| 70 |
+
_CHECKPOINT_FOR_DOC = "Dimple-7B"
|
| 71 |
+
_CONFIG_FOR_DOC = "DimpleConfig"
|
| 72 |
+
|
| 73 |
+
@dataclass
|
| 74 |
+
class DimpleModelOutput(ModelOutput):
|
| 75 |
+
"""
|
| 76 |
+
Base class for Dimple outputs.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 80 |
+
Language modeling loss (for next-token prediction).
|
| 81 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 82 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 83 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 84 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 85 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 86 |
+
|
| 87 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 88 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 89 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 90 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 91 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 92 |
+
|
| 93 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 94 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 95 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 96 |
+
sequence_length)`.
|
| 97 |
+
|
| 98 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 99 |
+
heads.
|
| 100 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
| 101 |
+
The rope index difference between sequence length and multimodal rope.
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
logits: torch.FloatTensor = None
|
| 105 |
+
loss: Optional[torch.FloatTensor] = None
|
| 106 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 107 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 108 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 109 |
+
rope_deltas: Optional[torch.LongTensor] = None
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class DimpleRotaryEmbedding(nn.Module):
|
| 113 |
+
def __init__(
|
| 114 |
+
self,
|
| 115 |
+
dim=None,
|
| 116 |
+
max_position_embeddings=2048,
|
| 117 |
+
base=10000,
|
| 118 |
+
device=None,
|
| 119 |
+
scaling_factor=1.0,
|
| 120 |
+
rope_type="default",
|
| 121 |
+
config: Optional[DimpleConfig] = None,
|
| 122 |
+
):
|
| 123 |
+
super().__init__()
|
| 124 |
+
# TODO (joao): remove the `if` below, only used for BC
|
| 125 |
+
self.rope_kwargs = {}
|
| 126 |
+
if config is None:
|
| 127 |
+
logger.warning_once(
|
| 128 |
+
"`DimpleRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 129 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
| 130 |
+
)
|
| 131 |
+
self.rope_kwargs = {
|
| 132 |
+
"rope_type": rope_type,
|
| 133 |
+
"factor": scaling_factor,
|
| 134 |
+
"dim": dim,
|
| 135 |
+
"base": base,
|
| 136 |
+
"max_position_embeddings": max_position_embeddings,
|
| 137 |
+
}
|
| 138 |
+
self.rope_type = rope_type
|
| 139 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 140 |
+
self.original_max_seq_len = max_position_embeddings
|
| 141 |
+
else:
|
| 142 |
+
# BC: "rope_type" was originally "type"
|
| 143 |
+
if config.rope_scaling is not None:
|
| 144 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 145 |
+
else:
|
| 146 |
+
self.rope_type = "default"
|
| 147 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 148 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 149 |
+
|
| 150 |
+
self.config = config
|
| 151 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 152 |
+
|
| 153 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 154 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 155 |
+
self.original_inv_freq = self.inv_freq
|
| 156 |
+
|
| 157 |
+
def reset_parameters(self):
|
| 158 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, self.inv_freq.device, **self.rope_kwargs)
|
| 159 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 160 |
+
self.original_inv_freq = self.inv_freq
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 164 |
+
"""
|
| 165 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 166 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 167 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 168 |
+
"""
|
| 169 |
+
seq_len = torch.max(position_ids) + 1
|
| 170 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 171 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 172 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 173 |
+
)
|
| 174 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 175 |
+
self.max_seq_len_cached = seq_len
|
| 176 |
+
|
| 177 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 178 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 179 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 180 |
+
|
| 181 |
+
@torch.no_grad()
|
| 182 |
+
def forward(self, x, position_ids):
|
| 183 |
+
if "dynamic" in self.rope_type:
|
| 184 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 185 |
+
|
| 186 |
+
# Core RoPE block. In contrast to other models, Dimple has different position ids for thw grids
|
| 187 |
+
# So we expand the inv_freq to shape (3, ...)
|
| 188 |
+
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
| 189 |
+
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
| 190 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 191 |
+
device_type = x.device.type
|
| 192 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 193 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 194 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
| 195 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 196 |
+
cos = emb.cos()
|
| 197 |
+
sin = emb.sin()
|
| 198 |
+
|
| 199 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 200 |
+
cos = cos * self.attention_scaling
|
| 201 |
+
sin = sin * self.attention_scaling
|
| 202 |
+
|
| 203 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 204 |
+
|
| 205 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2RMSNorm
|
| 206 |
+
class DimpleRMSNorm(nn.Module):
|
| 207 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 208 |
+
"""
|
| 209 |
+
DimpleRMSNorm is equivalent to T5LayerNorm
|
| 210 |
+
"""
|
| 211 |
+
super().__init__()
|
| 212 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 213 |
+
self.variance_epsilon = eps
|
| 214 |
+
|
| 215 |
+
def forward(self, hidden_states):
|
| 216 |
+
input_dtype = hidden_states.dtype
|
| 217 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 218 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 219 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 220 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 221 |
+
|
| 222 |
+
def extra_repr(self):
|
| 223 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 224 |
+
|
| 225 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 226 |
+
def rotate_half(x):
|
| 227 |
+
"""Rotates half the hidden dims of the input."""
|
| 228 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 229 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 230 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
| 234 |
+
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
|
| 235 |
+
|
| 236 |
+
Explanation:
|
| 237 |
+
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
| 238 |
+
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
| 239 |
+
vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately.
|
| 240 |
+
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
| 241 |
+
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
| 242 |
+
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
| 243 |
+
difference with modern LLMs.
|
| 244 |
+
|
| 245 |
+
Args:
|
| 246 |
+
q (`torch.Tensor`): The query tensor.
|
| 247 |
+
k (`torch.Tensor`): The key tensor.
|
| 248 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 249 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 250 |
+
position_ids (`torch.Tensor`):
|
| 251 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
| 252 |
+
used to pass offsetted position ids when working with a KV-cache.
|
| 253 |
+
mrope_section(`List(int)`):
|
| 254 |
+
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
| 255 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 256 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 257 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 258 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 259 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 260 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 261 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 262 |
+
Returns:
|
| 263 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 264 |
+
"""
|
| 265 |
+
mrope_section = mrope_section * 2
|
| 266 |
+
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
| 267 |
+
unsqueeze_dim
|
| 268 |
+
)
|
| 269 |
+
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
| 270 |
+
unsqueeze_dim
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 274 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 275 |
+
return q_embed, k_embed
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def apply_rotary_pos_emb_vision(
|
| 279 |
+
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
| 280 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 281 |
+
orig_q_dtype = q.dtype
|
| 282 |
+
orig_k_dtype = k.dtype
|
| 283 |
+
q, k = q.float(), k.float()
|
| 284 |
+
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
|
| 285 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 286 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 287 |
+
q_embed = q_embed.to(orig_q_dtype)
|
| 288 |
+
k_embed = k_embed.to(orig_k_dtype)
|
| 289 |
+
return q_embed, k_embed
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class DimpleVisionRotaryEmbedding(nn.Module):
|
| 293 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
| 294 |
+
super().__init__()
|
| 295 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
| 296 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 297 |
+
|
| 298 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
| 299 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
| 300 |
+
freqs = torch.outer(seq, self.inv_freq)
|
| 301 |
+
return freqs
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
class DimpleVisionPatchEmbed(nn.Module):
|
| 305 |
+
def __init__(
|
| 306 |
+
self,
|
| 307 |
+
patch_size: int = 14,
|
| 308 |
+
temporal_patch_size: int = 2,
|
| 309 |
+
in_channels: int = 3,
|
| 310 |
+
embed_dim: int = 1152,
|
| 311 |
+
) -> None:
|
| 312 |
+
super().__init__()
|
| 313 |
+
self.patch_size = patch_size
|
| 314 |
+
self.temporal_patch_size = temporal_patch_size
|
| 315 |
+
self.in_channels = in_channels
|
| 316 |
+
self.embed_dim = embed_dim
|
| 317 |
+
|
| 318 |
+
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
| 319 |
+
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
|
| 320 |
+
|
| 321 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 322 |
+
target_dtype = self.proj.weight.dtype
|
| 323 |
+
hidden_states = hidden_states.view(
|
| 324 |
+
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
| 325 |
+
)
|
| 326 |
+
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
| 327 |
+
return hidden_states
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class DimplePatchMerger(nn.Module):
|
| 331 |
+
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
| 332 |
+
super().__init__()
|
| 333 |
+
self.hidden_size = context_dim * (spatial_merge_size**2)
|
| 334 |
+
self.ln_q = DimpleRMSNorm(context_dim, eps=1e-6)
|
| 335 |
+
self.mlp = nn.Sequential(
|
| 336 |
+
nn.Linear(self.hidden_size, self.hidden_size),
|
| 337 |
+
nn.GELU(),
|
| 338 |
+
nn.Linear(self.hidden_size, dim),
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 342 |
+
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
| 343 |
+
return x
|
| 344 |
+
|
| 345 |
+
class DimpleVisionMLP(nn.Module):
|
| 346 |
+
def __init__(self, config, bias: bool = False):
|
| 347 |
+
super().__init__()
|
| 348 |
+
self.hidden_size = config.hidden_size
|
| 349 |
+
self.intermediate_size = config.intermediate_size
|
| 350 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
|
| 351 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
|
| 352 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias)
|
| 353 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 354 |
+
|
| 355 |
+
def forward(self, hidden_state):
|
| 356 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
| 357 |
+
|
| 358 |
+
class DimpleVisionAttention(nn.Module):
|
| 359 |
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
| 360 |
+
super().__init__()
|
| 361 |
+
self.num_heads = num_heads
|
| 362 |
+
self.head_dim = dim // num_heads
|
| 363 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
| 364 |
+
self.proj = nn.Linear(dim, dim)
|
| 365 |
+
|
| 366 |
+
def forward(
|
| 367 |
+
self,
|
| 368 |
+
hidden_states: torch.Tensor,
|
| 369 |
+
cu_seqlens: torch.Tensor,
|
| 370 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 371 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 372 |
+
) -> torch.Tensor:
|
| 373 |
+
seq_length = hidden_states.shape[0]
|
| 374 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
| 375 |
+
if position_embeddings is None:
|
| 376 |
+
logger.warning_once(
|
| 377 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 378 |
+
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed "
|
| 379 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be "
|
| 380 |
+
"removed and `position_embeddings` will be mandatory."
|
| 381 |
+
)
|
| 382 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 383 |
+
cos = emb.cos()
|
| 384 |
+
sin = emb.sin()
|
| 385 |
+
else:
|
| 386 |
+
cos, sin = position_embeddings
|
| 387 |
+
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
|
| 388 |
+
|
| 389 |
+
attention_mask = torch.full(
|
| 390 |
+
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
| 391 |
+
)
|
| 392 |
+
for i in range(1, len(cu_seqlens)):
|
| 393 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
|
| 394 |
+
|
| 395 |
+
q = q.transpose(0, 1)
|
| 396 |
+
k = k.transpose(0, 1)
|
| 397 |
+
v = v.transpose(0, 1)
|
| 398 |
+
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
| 399 |
+
attn_weights = attn_weights + attention_mask
|
| 400 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
|
| 401 |
+
attn_output = torch.matmul(attn_weights, v)
|
| 402 |
+
attn_output = attn_output.transpose(0, 1)
|
| 403 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
| 404 |
+
attn_output = self.proj(attn_output)
|
| 405 |
+
return attn_output
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
class DimpleVisionFlashAttention2(nn.Module):
|
| 409 |
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
| 410 |
+
raise NotImplementedError(
|
| 411 |
+
"FlashAttention2 is not supported in Dimple. Please use the `sdpa` implementation instead."
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
class DimpleVisionSdpaAttention(nn.Module):
|
| 416 |
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
| 417 |
+
super().__init__()
|
| 418 |
+
self.num_heads = num_heads
|
| 419 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
| 420 |
+
self.proj = nn.Linear(dim, dim)
|
| 421 |
+
|
| 422 |
+
def forward(
|
| 423 |
+
self,
|
| 424 |
+
hidden_states: torch.Tensor,
|
| 425 |
+
cu_seqlens: torch.Tensor,
|
| 426 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 427 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 428 |
+
) -> torch.Tensor:
|
| 429 |
+
seq_length = hidden_states.shape[0]
|
| 430 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
| 431 |
+
if position_embeddings is None:
|
| 432 |
+
logger.warning_once(
|
| 433 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 434 |
+
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed "
|
| 435 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be "
|
| 436 |
+
"removed and `position_embeddings` will be mandatory."
|
| 437 |
+
)
|
| 438 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 439 |
+
cos = emb.cos()
|
| 440 |
+
sin = emb.sin()
|
| 441 |
+
else:
|
| 442 |
+
cos, sin = position_embeddings
|
| 443 |
+
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
|
| 444 |
+
|
| 445 |
+
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
| 446 |
+
for i in range(1, len(cu_seqlens)):
|
| 447 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
| 448 |
+
q = q.transpose(0, 1)
|
| 449 |
+
k = k.transpose(0, 1)
|
| 450 |
+
v = v.transpose(0, 1)
|
| 451 |
+
attn_output = F.scaled_dot_product_attention(
|
| 452 |
+
q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attention_mask, dropout_p=0.0
|
| 453 |
+
)
|
| 454 |
+
attn_output = attn_output.squeeze(0).transpose(0, 1)
|
| 455 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
| 456 |
+
attn_output = self.proj(attn_output)
|
| 457 |
+
return attn_output
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
DIMPLE_VISION_ATTENTION_CLASSES = {
|
| 461 |
+
"eager": DimpleVisionAttention,
|
| 462 |
+
# "flash_attention_2": DimpleVisionFlashAttention2,
|
| 463 |
+
"sdpa": DimpleVisionSdpaAttention,
|
| 464 |
+
}
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
class DimpleVisionBlock(nn.Module):
|
| 468 |
+
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
| 469 |
+
super().__init__()
|
| 470 |
+
self.norm1 = DimpleRMSNorm(config.hidden_size, eps=1e-6)
|
| 471 |
+
self.norm2 = DimpleRMSNorm(config.hidden_size, eps=1e-6)
|
| 472 |
+
self.attn = DIMPLE_VISION_ATTENTION_CLASSES[attn_implementation](
|
| 473 |
+
config.hidden_size, num_heads=config.num_heads
|
| 474 |
+
)
|
| 475 |
+
self.mlp = DimpleVisionMLP(config, bias=True)
|
| 476 |
+
|
| 477 |
+
def forward(
|
| 478 |
+
self,
|
| 479 |
+
hidden_states: torch.Tensor,
|
| 480 |
+
cu_seqlens: torch.Tensor,
|
| 481 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 482 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 483 |
+
) -> torch.Tensor:
|
| 484 |
+
hidden_states = hidden_states + self.attn(
|
| 485 |
+
self.norm1(hidden_states),
|
| 486 |
+
cu_seqlens=cu_seqlens,
|
| 487 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 488 |
+
position_embeddings=position_embeddings,
|
| 489 |
+
)
|
| 490 |
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
| 491 |
+
return hidden_states
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP
|
| 495 |
+
class DimpleMLP(nn.Module):
|
| 496 |
+
def __init__(self, config):
|
| 497 |
+
super().__init__()
|
| 498 |
+
self.hidden_size = config.hidden_size
|
| 499 |
+
self.intermediate_size = config.intermediate_size
|
| 500 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 501 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 502 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 503 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 504 |
+
|
| 505 |
+
def forward(self, hidden_state):
|
| 506 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 510 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 511 |
+
"""
|
| 512 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 513 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 514 |
+
"""
|
| 515 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 516 |
+
if n_rep == 1:
|
| 517 |
+
return hidden_states
|
| 518 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 519 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
class DimpleAttention(nn.Module):
|
| 523 |
+
"""
|
| 524 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
| 525 |
+
and "Generating Long Sequences with Sparse Transformers".
|
| 526 |
+
"""
|
| 527 |
+
|
| 528 |
+
def __init__(self, config: DimpleConfig, layer_idx: Optional[int] = None):
|
| 529 |
+
super().__init__()
|
| 530 |
+
self.config = config
|
| 531 |
+
self.layer_idx = layer_idx
|
| 532 |
+
if layer_idx is None:
|
| 533 |
+
logger.warning_once(
|
| 534 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 535 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 536 |
+
"when creating this class."
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
self.hidden_size = config.hidden_size
|
| 540 |
+
self.num_heads = config.num_attention_heads
|
| 541 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 542 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 543 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 544 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 545 |
+
self.rope_theta = config.rope_theta
|
| 546 |
+
self.is_causal = False # not used in Dream
|
| 547 |
+
self.attention_dropout = config.attention_dropout
|
| 548 |
+
self.rope_scaling = config.rope_scaling # in Dream rope scaling is None
|
| 549 |
+
self.mrope_section = config.mrope_section
|
| 550 |
+
|
| 551 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 552 |
+
raise ValueError(
|
| 553 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 554 |
+
f" and `num_heads`: {self.num_heads})."
|
| 555 |
+
)
|
| 556 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
| 557 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 558 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 559 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 560 |
+
|
| 561 |
+
# implementaion in Qwen
|
| 562 |
+
# self.rotary_emb = DimpleRotaryEmbedding(
|
| 563 |
+
# self.head_dim,
|
| 564 |
+
# max_position_embeddings=self.max_position_embeddings,
|
| 565 |
+
# base=self.rope_theta,
|
| 566 |
+
# )
|
| 567 |
+
# implementaion in dream, same if configs are same
|
| 568 |
+
self.rotary_emb = DimpleRotaryEmbedding(config=self.config)
|
| 569 |
+
|
| 570 |
+
def forward(
|
| 571 |
+
self,
|
| 572 |
+
hidden_states: torch.Tensor,
|
| 573 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 574 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 575 |
+
past_key_value: Optional[Cache] = None,
|
| 576 |
+
output_attentions: bool = False,
|
| 577 |
+
use_cache: bool = False,
|
| 578 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 579 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 580 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 581 |
+
bsz, q_len, _ = hidden_states.size()
|
| 582 |
+
|
| 583 |
+
query_states = self.q_proj(hidden_states)
|
| 584 |
+
key_states = self.k_proj(hidden_states)
|
| 585 |
+
value_states = self.v_proj(hidden_states)
|
| 586 |
+
|
| 587 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 588 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 589 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 590 |
+
|
| 591 |
+
# not used in Dream
|
| 592 |
+
# kv_seq_len = key_states.shape[-2]
|
| 593 |
+
# if past_key_value is not None:
|
| 594 |
+
# kv_seq_len += cache_position[0] + 1
|
| 595 |
+
|
| 596 |
+
if position_embeddings is None:
|
| 597 |
+
logger.warning_once(
|
| 598 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 599 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 600 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 601 |
+
"removed and `position_embeddings` will be mandatory."
|
| 602 |
+
)
|
| 603 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 604 |
+
else:
|
| 605 |
+
cos, sin = position_embeddings
|
| 606 |
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
| 607 |
+
query_states, key_states, cos, sin, self.mrope_section
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
if past_key_value is not None:
|
| 611 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 612 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 613 |
+
|
| 614 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 615 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 616 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 617 |
+
|
| 618 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 619 |
+
|
| 620 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 621 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 622 |
+
attn_weights = attn_weights + causal_mask
|
| 623 |
+
|
| 624 |
+
# Fix precision issues in Dimple float16 inference
|
| 625 |
+
# Replace inf values with zeros in attention weights to prevent NaN propagation
|
| 626 |
+
if query_states.dtype == torch.float16:
|
| 627 |
+
attn_weights = torch.where(torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights)
|
| 628 |
+
|
| 629 |
+
# upcast attention to fp32
|
| 630 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 631 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 632 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 633 |
+
|
| 634 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 635 |
+
raise ValueError(
|
| 636 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 637 |
+
f" {attn_output.size()}"
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 641 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 642 |
+
|
| 643 |
+
attn_output = self.o_proj(attn_output)
|
| 644 |
+
|
| 645 |
+
if not output_attentions:
|
| 646 |
+
attn_weights = None
|
| 647 |
+
|
| 648 |
+
return attn_output, attn_weights, past_key_value
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
class DimpleFlashAttention2(DimpleAttention):
|
| 652 |
+
|
| 653 |
+
def __init__(self, *args, **kwargs):
|
| 654 |
+
raise NotImplementedError(
|
| 655 |
+
"DimpleFlashAttention2 is not implemented yet. Please use DimpleSdpaAttention instead."
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
class DimpleSdpaAttention(DimpleAttention):
|
| 660 |
+
"""
|
| 661 |
+
Dimple attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 662 |
+
`DimpleAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 663 |
+
SDPA API.
|
| 664 |
+
"""
|
| 665 |
+
|
| 666 |
+
# Adapted from DimpleAttention.forward
|
| 667 |
+
def forward(
|
| 668 |
+
self,
|
| 669 |
+
hidden_states: torch.Tensor,
|
| 670 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 671 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 672 |
+
past_key_value: Optional[Cache] = None,
|
| 673 |
+
output_attentions: bool = False,
|
| 674 |
+
use_cache: bool = False,
|
| 675 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 676 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 677 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 678 |
+
if output_attentions:
|
| 679 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 680 |
+
Dimple.warning_once(
|
| 681 |
+
"DimpleModel is using DimpleSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 682 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 683 |
+
)
|
| 684 |
+
return super().forward(
|
| 685 |
+
hidden_states=hidden_states,
|
| 686 |
+
attention_mask=attention_mask,
|
| 687 |
+
position_ids=position_ids,
|
| 688 |
+
past_key_value=past_key_value,
|
| 689 |
+
output_attentions=output_attentions,
|
| 690 |
+
use_cache=use_cache,
|
| 691 |
+
# cache_position=cache_position, # not used in Dream
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
bsz, q_len, _ = hidden_states.size()
|
| 695 |
+
|
| 696 |
+
query_states = self.q_proj(hidden_states)
|
| 697 |
+
key_states = self.k_proj(hidden_states)
|
| 698 |
+
value_states = self.v_proj(hidden_states)
|
| 699 |
+
|
| 700 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 701 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 702 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 703 |
+
|
| 704 |
+
# not used in Dream
|
| 705 |
+
# kv_seq_len = key_states.shape[-2]
|
| 706 |
+
# if past_key_value is not None:
|
| 707 |
+
# kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 708 |
+
if position_embeddings is None:
|
| 709 |
+
logger.warning_once(
|
| 710 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 711 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 712 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 713 |
+
"removed and `position_embeddings` will be mandatory."
|
| 714 |
+
)
|
| 715 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 716 |
+
else:
|
| 717 |
+
cos, sin = position_embeddings
|
| 718 |
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
| 719 |
+
query_states, key_states, cos, sin, self.mrope_section
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
if past_key_value is not None:
|
| 723 |
+
logger.warning_once(
|
| 724 |
+
f"In {self.__class__}, cache is used."
|
| 725 |
+
)
|
| 726 |
+
# print("cache is used")
|
| 727 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 728 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 729 |
+
|
| 730 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 731 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 732 |
+
|
| 733 |
+
# not used in Dream
|
| 734 |
+
# causal_mask = attention_mask
|
| 735 |
+
# if attention_mask is not None: # no matter the length, we just slice it
|
| 736 |
+
# causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 737 |
+
|
| 738 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 739 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 740 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 741 |
+
query_states = query_states.contiguous()
|
| 742 |
+
key_states = key_states.contiguous()
|
| 743 |
+
value_states = value_states.contiguous()
|
| 744 |
+
|
| 745 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 746 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 747 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
| 748 |
+
# is_causal = True if causal_mask is None and q_len > 1 else False # not used in Dream
|
| 749 |
+
|
| 750 |
+
assert attention_mask.dtype == torch.bool, (
|
| 751 |
+
f"Attention mask should be of type `torch.bool`, but is {attention_mask.dtype}."
|
| 752 |
+
)
|
| 753 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 754 |
+
query_states,
|
| 755 |
+
key_states,
|
| 756 |
+
value_states,
|
| 757 |
+
attn_mask=attention_mask if isinstance(attention_mask, torch.Tensor) else None,
|
| 758 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 759 |
+
is_causal=False, # hard coded
|
| 760 |
+
)
|
| 761 |
+
|
| 762 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 763 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 764 |
+
|
| 765 |
+
attn_output = self.o_proj(attn_output)
|
| 766 |
+
|
| 767 |
+
return attn_output, None, past_key_value
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
DIMPLE_ATTENTION_CLASSES = {
|
| 771 |
+
"eager": DimpleAttention,
|
| 772 |
+
# "flash_attention_2": DimpleFlashAttention2,
|
| 773 |
+
"sdpa": DimpleSdpaAttention,
|
| 774 |
+
}
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
class DimpleDecoderLayer(nn.Module):
|
| 778 |
+
def __init__(self, config: DimpleConfig, layer_idx: int):
|
| 779 |
+
super().__init__()
|
| 780 |
+
self.hidden_size = config.hidden_size
|
| 781 |
+
|
| 782 |
+
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
| 783 |
+
logger.warning_once(
|
| 784 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 785 |
+
"unexpected results may be encountered."
|
| 786 |
+
)
|
| 787 |
+
# self.self_attn = Dimple_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
| 788 |
+
self.self_attn = DimpleSdpaAttention(config, layer_idx)
|
| 789 |
+
|
| 790 |
+
self.mlp = DimpleMLP(config)
|
| 791 |
+
self.input_layernorm = DimpleRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 792 |
+
self.post_attention_layernorm = DimpleRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 793 |
+
|
| 794 |
+
def forward(
|
| 795 |
+
self,
|
| 796 |
+
hidden_states: torch.Tensor,
|
| 797 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 798 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 799 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 800 |
+
output_attentions: Optional[bool] = False,
|
| 801 |
+
use_cache: Optional[bool] = False,
|
| 802 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 803 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 804 |
+
**kwargs,
|
| 805 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 806 |
+
"""
|
| 807 |
+
Args:
|
| 808 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 809 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 810 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 811 |
+
output_attentions (`bool`, *optional*):
|
| 812 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 813 |
+
returned tensors for more detail.
|
| 814 |
+
use_cache (`bool`, *optional*):
|
| 815 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 816 |
+
(see `past_key_values`).
|
| 817 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 818 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 819 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 820 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 821 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 822 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 823 |
+
kwargs (`dict`, *optional*):
|
| 824 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 825 |
+
into the model
|
| 826 |
+
"""
|
| 827 |
+
|
| 828 |
+
residual = hidden_states
|
| 829 |
+
|
| 830 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 831 |
+
|
| 832 |
+
# Self Attention
|
| 833 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 834 |
+
hidden_states=hidden_states,
|
| 835 |
+
attention_mask=attention_mask,
|
| 836 |
+
position_ids=position_ids,
|
| 837 |
+
past_key_value=past_key_value,
|
| 838 |
+
output_attentions=output_attentions,
|
| 839 |
+
use_cache=use_cache,
|
| 840 |
+
cache_position=cache_position,
|
| 841 |
+
position_embeddings=position_embeddings,
|
| 842 |
+
)
|
| 843 |
+
hidden_states = residual + hidden_states
|
| 844 |
+
|
| 845 |
+
# Fully Connected
|
| 846 |
+
residual = hidden_states
|
| 847 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 848 |
+
hidden_states = self.mlp(hidden_states)
|
| 849 |
+
hidden_states = residual + hidden_states
|
| 850 |
+
|
| 851 |
+
outputs = (hidden_states,)
|
| 852 |
+
|
| 853 |
+
if output_attentions:
|
| 854 |
+
outputs += (self_attn_weights,)
|
| 855 |
+
|
| 856 |
+
if use_cache:
|
| 857 |
+
outputs += (present_key_value,)
|
| 858 |
+
|
| 859 |
+
return outputs
|
| 860 |
+
|
| 861 |
+
|
| 862 |
+
Dimple_START_DOCSTRING = r"""
|
| 863 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 864 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 865 |
+
etc.)
|
| 866 |
+
|
| 867 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 868 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 869 |
+
and behavior.
|
| 870 |
+
|
| 871 |
+
Parameters:
|
| 872 |
+
config ([`DimpleConfig`]):
|
| 873 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 874 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 875 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 876 |
+
"""
|
| 877 |
+
|
| 878 |
+
|
| 879 |
+
@add_start_docstrings(
|
| 880 |
+
"The bare Dimple Model outputting raw hidden-states without any specific head on top.",
|
| 881 |
+
Dimple_START_DOCSTRING,
|
| 882 |
+
)
|
| 883 |
+
class DimplePreTrainedModel(PreTrainedModel):
|
| 884 |
+
config_class = DimpleConfig
|
| 885 |
+
base_model_prefix = "model"
|
| 886 |
+
supports_gradient_checkpointing = True
|
| 887 |
+
_no_split_modules = ["DimpleDecoderLayer", "DimpleVisionBlock"]
|
| 888 |
+
_skip_keys_device_placement = "past_key_values"
|
| 889 |
+
_supports_flash_attn_2 = True
|
| 890 |
+
_supports_sdpa = True
|
| 891 |
+
_supports_cache_class = True
|
| 892 |
+
_supports_quantized_cache = True
|
| 893 |
+
_supports_static_cache = True
|
| 894 |
+
|
| 895 |
+
def _init_weights(self, module):
|
| 896 |
+
std = self.config.initializer_range
|
| 897 |
+
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
| 898 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 899 |
+
if module.bias is not None:
|
| 900 |
+
module.bias.data.zero_()
|
| 901 |
+
elif isinstance(module, nn.Embedding):
|
| 902 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 903 |
+
if module.padding_idx is not None:
|
| 904 |
+
module.weight.data[module.padding_idx].zero_()
|
| 905 |
+
|
| 906 |
+
@classmethod
|
| 907 |
+
def from_pretrained(
|
| 908 |
+
cls,
|
| 909 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
| 910 |
+
*model_args,
|
| 911 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
| 912 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
| 913 |
+
ignore_mismatched_sizes: bool = False,
|
| 914 |
+
force_download: bool = False,
|
| 915 |
+
local_files_only: bool = False,
|
| 916 |
+
token: Optional[Union[str, bool]] = None,
|
| 917 |
+
revision: str = "main",
|
| 918 |
+
use_safetensors: Optional[bool] = None,
|
| 919 |
+
weights_only: bool = True,
|
| 920 |
+
**kwargs,
|
| 921 |
+
):
|
| 922 |
+
_model = super().from_pretrained(
|
| 923 |
+
pretrained_model_name_or_path,
|
| 924 |
+
*model_args,
|
| 925 |
+
config=config,
|
| 926 |
+
cache_dir=cache_dir,
|
| 927 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
| 928 |
+
force_download=force_download,
|
| 929 |
+
local_files_only=local_files_only,
|
| 930 |
+
token=token,
|
| 931 |
+
revision=revision,
|
| 932 |
+
use_safetensors=use_safetensors,
|
| 933 |
+
weights_only=weights_only,
|
| 934 |
+
**kwargs,
|
| 935 |
+
)
|
| 936 |
+
# NOTE(Lin): we need to override the generation config
|
| 937 |
+
# because the generation config loaded in `from_pretrained`
|
| 938 |
+
# does not include all the attributes of DimpleGenerationConfig
|
| 939 |
+
resume_download = kwargs.get("resume_download", None)
|
| 940 |
+
proxies = kwargs.get("proxies", None)
|
| 941 |
+
subfolder = kwargs.get("subfolder", "")
|
| 942 |
+
from_auto_class = kwargs.get("_from_auto", False)
|
| 943 |
+
from_pipeline = kwargs.get("_from_pipeline", None)
|
| 944 |
+
_model.generation_config = DimpleGenerationConfig.from_pretrained(
|
| 945 |
+
pretrained_model_name_or_path,
|
| 946 |
+
cache_dir=cache_dir,
|
| 947 |
+
force_download=force_download,
|
| 948 |
+
resume_download=resume_download,
|
| 949 |
+
proxies=proxies,
|
| 950 |
+
local_files_only=local_files_only,
|
| 951 |
+
token=token,
|
| 952 |
+
revision=revision,
|
| 953 |
+
subfolder=subfolder,
|
| 954 |
+
_from_auto=from_auto_class,
|
| 955 |
+
_from_pipeline=from_pipeline,
|
| 956 |
+
)
|
| 957 |
+
return _model
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
class DimpleVisionTransformerPretrainedModel(DimplePreTrainedModel):
|
| 961 |
+
config_class = DimpleVisionConfig
|
| 962 |
+
_no_split_modules = ["DimpleVisionBlock"]
|
| 963 |
+
|
| 964 |
+
def __init__(self, config, *inputs, **kwargs) -> None:
|
| 965 |
+
super().__init__(config, *inputs, **kwargs)
|
| 966 |
+
self.spatial_merge_size = config.spatial_merge_size
|
| 967 |
+
self.patch_size = config.patch_size
|
| 968 |
+
self.fullatt_block_indexes = config.fullatt_block_indexes
|
| 969 |
+
self.window_size = config.window_size
|
| 970 |
+
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
|
| 971 |
+
|
| 972 |
+
self.patch_embed = DimpleVisionPatchEmbed(
|
| 973 |
+
patch_size=config.patch_size,
|
| 974 |
+
temporal_patch_size=config.temporal_patch_size,
|
| 975 |
+
in_channels=config.in_channels,
|
| 976 |
+
embed_dim=config.hidden_size,
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
head_dim = config.hidden_size // config.num_heads
|
| 980 |
+
self.rotary_pos_emb = DimpleVisionRotaryEmbedding(head_dim // 2)
|
| 981 |
+
|
| 982 |
+
self.blocks = nn.ModuleList(
|
| 983 |
+
[DimpleVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
|
| 984 |
+
)
|
| 985 |
+
self.merger = DimplePatchMerger(
|
| 986 |
+
dim=config.out_hidden_size,
|
| 987 |
+
context_dim=config.hidden_size,
|
| 988 |
+
spatial_merge_size=config.spatial_merge_size,
|
| 989 |
+
)
|
| 990 |
+
self.gradient_checkpointing = False
|
| 991 |
+
|
| 992 |
+
def get_dtype(self) -> torch.dtype:
|
| 993 |
+
return self.blocks[0].mlp.down_proj.weight.dtype
|
| 994 |
+
|
| 995 |
+
def get_device(self) -> torch.device:
|
| 996 |
+
return self.blocks[0].mlp.down_proj.weight.device
|
| 997 |
+
|
| 998 |
+
def rot_pos_emb(self, grid_thw):
|
| 999 |
+
pos_ids = []
|
| 1000 |
+
for t, h, w in grid_thw:
|
| 1001 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
| 1002 |
+
hpos_ids = hpos_ids.reshape(
|
| 1003 |
+
h // self.spatial_merge_size,
|
| 1004 |
+
self.spatial_merge_size,
|
| 1005 |
+
w // self.spatial_merge_size,
|
| 1006 |
+
self.spatial_merge_size,
|
| 1007 |
+
)
|
| 1008 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
| 1009 |
+
hpos_ids = hpos_ids.flatten()
|
| 1010 |
+
|
| 1011 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
| 1012 |
+
wpos_ids = wpos_ids.reshape(
|
| 1013 |
+
h // self.spatial_merge_size,
|
| 1014 |
+
self.spatial_merge_size,
|
| 1015 |
+
w // self.spatial_merge_size,
|
| 1016 |
+
self.spatial_merge_size,
|
| 1017 |
+
)
|
| 1018 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
| 1019 |
+
wpos_ids = wpos_ids.flatten()
|
| 1020 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
| 1021 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
| 1022 |
+
max_grid_size = grid_thw[:, 1:].max()
|
| 1023 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
| 1024 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
| 1025 |
+
return rotary_pos_emb
|
| 1026 |
+
|
| 1027 |
+
def get_window_index(self, grid_thw):
|
| 1028 |
+
window_index: list = []
|
| 1029 |
+
cu_window_seqlens: list = [0]
|
| 1030 |
+
window_index_id = 0
|
| 1031 |
+
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size
|
| 1032 |
+
|
| 1033 |
+
for grid_t, grid_h, grid_w in grid_thw:
|
| 1034 |
+
llm_grid_h, llm_grid_w = (
|
| 1035 |
+
grid_h // self.spatial_merge_size,
|
| 1036 |
+
grid_w // self.spatial_merge_size,
|
| 1037 |
+
)
|
| 1038 |
+
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
|
| 1039 |
+
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
|
| 1040 |
+
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
|
| 1041 |
+
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
|
| 1042 |
+
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
|
| 1043 |
+
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
|
| 1044 |
+
index_padded = index_padded.reshape(
|
| 1045 |
+
grid_t,
|
| 1046 |
+
num_windows_h,
|
| 1047 |
+
vit_merger_window_size,
|
| 1048 |
+
num_windows_w,
|
| 1049 |
+
vit_merger_window_size,
|
| 1050 |
+
)
|
| 1051 |
+
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
|
| 1052 |
+
grid_t,
|
| 1053 |
+
num_windows_h * num_windows_w,
|
| 1054 |
+
vit_merger_window_size,
|
| 1055 |
+
vit_merger_window_size,
|
| 1056 |
+
)
|
| 1057 |
+
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
|
| 1058 |
+
index_padded = index_padded.reshape(-1)
|
| 1059 |
+
index_new = index_padded[index_padded != -100]
|
| 1060 |
+
window_index.append(index_new + window_index_id)
|
| 1061 |
+
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
|
| 1062 |
+
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
|
| 1063 |
+
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
|
| 1064 |
+
window_index = torch.cat(window_index, dim=0)
|
| 1065 |
+
|
| 1066 |
+
return window_index, cu_window_seqlens
|
| 1067 |
+
|
| 1068 |
+
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
|
| 1069 |
+
"""
|
| 1070 |
+
Args:
|
| 1071 |
+
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`):
|
| 1072 |
+
The final hidden states of the model.
|
| 1073 |
+
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
|
| 1074 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 1075 |
+
|
| 1076 |
+
Returns:
|
| 1077 |
+
`torch.Tensor`: hidden_states.
|
| 1078 |
+
"""
|
| 1079 |
+
hidden_states = self.patch_embed(hidden_states)
|
| 1080 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
| 1081 |
+
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
|
| 1082 |
+
cu_window_seqlens = torch.tensor(
|
| 1083 |
+
cu_window_seqlens,
|
| 1084 |
+
device=hidden_states.device,
|
| 1085 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
| 1086 |
+
)
|
| 1087 |
+
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
|
| 1088 |
+
|
| 1089 |
+
seq_len, _ = hidden_states.size()
|
| 1090 |
+
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
| 1091 |
+
hidden_states = hidden_states[window_index, :, :]
|
| 1092 |
+
hidden_states = hidden_states.reshape(seq_len, -1)
|
| 1093 |
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
| 1094 |
+
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
|
| 1095 |
+
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
|
| 1096 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 1097 |
+
position_embeddings = (emb.cos(), emb.sin())
|
| 1098 |
+
|
| 1099 |
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
| 1100 |
+
dim=0,
|
| 1101 |
+
# Select dtype based on the following factors:
|
| 1102 |
+
# - FA2 requires that cu_seqlens_q must have dtype int32
|
| 1103 |
+
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
|
| 1104 |
+
# See https://github.com/huggingface/transformers/pull/34852 for more information
|
| 1105 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
| 1106 |
+
)
|
| 1107 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 1108 |
+
|
| 1109 |
+
for layer_num, blk in enumerate(self.blocks):
|
| 1110 |
+
if layer_num in self.fullatt_block_indexes:
|
| 1111 |
+
cu_seqlens_now = cu_seqlens
|
| 1112 |
+
else:
|
| 1113 |
+
cu_seqlens_now = cu_window_seqlens
|
| 1114 |
+
if self.gradient_checkpointing and self.training:
|
| 1115 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 1116 |
+
blk.__call__, hidden_states, cu_seqlens_now, None, position_embeddings
|
| 1117 |
+
)
|
| 1118 |
+
else:
|
| 1119 |
+
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens_now, position_embeddings=position_embeddings)
|
| 1120 |
+
|
| 1121 |
+
hidden_states = self.merger(hidden_states)
|
| 1122 |
+
reverse_indices = torch.argsort(window_index)
|
| 1123 |
+
hidden_states = hidden_states[reverse_indices, :]
|
| 1124 |
+
|
| 1125 |
+
return hidden_states
|
| 1126 |
+
|
| 1127 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->Dimple
|
| 1128 |
+
class DimpleMultiModalProjector(nn.Module):
|
| 1129 |
+
def __init__(self, config: DimpleConfig):
|
| 1130 |
+
super().__init__()
|
| 1131 |
+
|
| 1132 |
+
self.linear_1 = nn.Linear(config.vision_config.out_hidden_size, config.hidden_size, bias=True)
|
| 1133 |
+
self.act = ACT2FN[config.hidden_act]
|
| 1134 |
+
self.linear_2 = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
| 1135 |
+
|
| 1136 |
+
def forward(self, image_features):
|
| 1137 |
+
hidden_states = self.linear_1(image_features)
|
| 1138 |
+
hidden_states = self.act(hidden_states)
|
| 1139 |
+
hidden_states = self.linear_2(hidden_states)
|
| 1140 |
+
return hidden_states
|
| 1141 |
+
|
| 1142 |
+
@add_start_docstrings(
|
| 1143 |
+
"The bare Dimple Model outputting raw hidden-states without any specific head on top.",
|
| 1144 |
+
Dimple_START_DOCSTRING,
|
| 1145 |
+
)
|
| 1146 |
+
class DimpleBaseModel(DimplePreTrainedModel):
|
| 1147 |
+
def __init__(self, config: DimpleConfig):
|
| 1148 |
+
super().__init__(config)
|
| 1149 |
+
self.padding_idx = config.pad_token_id
|
| 1150 |
+
self.vocab_size = config.vocab_size
|
| 1151 |
+
|
| 1152 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1153 |
+
self.layers = nn.ModuleList(
|
| 1154 |
+
[DimpleDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 1155 |
+
)
|
| 1156 |
+
self._attn_implementation = config._attn_implementation
|
| 1157 |
+
self.norm = DimpleRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1158 |
+
self.rotary_emb = DimpleRotaryEmbedding(config=config)
|
| 1159 |
+
|
| 1160 |
+
self.gradient_checkpointing = False
|
| 1161 |
+
# Initialize weights and apply final processing
|
| 1162 |
+
self.post_init()
|
| 1163 |
+
|
| 1164 |
+
def get_input_embeddings(self):
|
| 1165 |
+
return self.embed_tokens
|
| 1166 |
+
|
| 1167 |
+
def set_input_embeddings(self, value):
|
| 1168 |
+
self.embed_tokens = value
|
| 1169 |
+
|
| 1170 |
+
def forward(
|
| 1171 |
+
self,
|
| 1172 |
+
input_ids: torch.LongTensor = None,
|
| 1173 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1174 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1175 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1176 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1177 |
+
use_cache: Optional[bool] = None,
|
| 1178 |
+
output_attentions: Optional[bool] = None,
|
| 1179 |
+
output_hidden_states: Optional[bool] = None,
|
| 1180 |
+
return_dict: Optional[bool] = None,
|
| 1181 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1182 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1183 |
+
|
| 1184 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1185 |
+
output_hidden_states = (
|
| 1186 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1187 |
+
)
|
| 1188 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1189 |
+
|
| 1190 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1191 |
+
|
| 1192 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 1193 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 1194 |
+
|
| 1195 |
+
if self.gradient_checkpointing and self.training:
|
| 1196 |
+
if use_cache:
|
| 1197 |
+
use_cache = False
|
| 1198 |
+
|
| 1199 |
+
if inputs_embeds is None:
|
| 1200 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1201 |
+
|
| 1202 |
+
if use_cache and past_key_values is None:
|
| 1203 |
+
logger.warning_once(
|
| 1204 |
+
"This should not be triggered, in either training or inference, but if it is, please report it to us."
|
| 1205 |
+
)
|
| 1206 |
+
past_key_values = DynamicCache()
|
| 1207 |
+
|
| 1208 |
+
if cache_position is None:
|
| 1209 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1210 |
+
cache_position = torch.arange(
|
| 1211 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 1212 |
+
)
|
| 1213 |
+
|
| 1214 |
+
# the hard coded `3` is for temporal, height and width.
|
| 1215 |
+
if position_ids is None:
|
| 1216 |
+
logger.warning_once(
|
| 1217 |
+
"This should not be triggered, in either training or inference, but if it is, please report it to us."
|
| 1218 |
+
)
|
| 1219 |
+
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
| 1220 |
+
elif position_ids.dim() == 2:
|
| 1221 |
+
logger.warning_once(
|
| 1222 |
+
"This should not be triggered, in either training or inference, but if it is, please report it to us."
|
| 1223 |
+
)
|
| 1224 |
+
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
| 1225 |
+
|
| 1226 |
+
# generate 4d caucasl attention mask
|
| 1227 |
+
if len(attention_mask.shape) == 4 :
|
| 1228 |
+
logger.warning_once(
|
| 1229 |
+
f"4d Attention Mask is used."
|
| 1230 |
+
)
|
| 1231 |
+
if attention_mask.dtype != torch.bool:
|
| 1232 |
+
logger.warning_once(
|
| 1233 |
+
f"Attention mask should be of type `torch.bool`, but is {attention_mask.dtype}. Changes have been made to convert it to `torch.bool`."
|
| 1234 |
+
)
|
| 1235 |
+
attention_mask = attention_mask.to(torch.bool)
|
| 1236 |
+
pass
|
| 1237 |
+
elif len(attention_mask.shape) == 2:
|
| 1238 |
+
if not self.config.full_attn_mask:
|
| 1239 |
+
# not used in Dream
|
| 1240 |
+
diag_attention_mask = torch.arange(
|
| 1241 |
+
attention_mask.shape[1],
|
| 1242 |
+
device=attention_mask.device
|
| 1243 |
+
).unsqueeze(0) <= torch.arange(
|
| 1244 |
+
attention_mask.shape[1],
|
| 1245 |
+
device=attention_mask.device
|
| 1246 |
+
).unsqueeze(1)
|
| 1247 |
+
diag_attention_mask = diag_attention_mask[None, None, :, :] # [1, 1, S, S]
|
| 1248 |
+
pad_attention_mask = torch.logical_and(
|
| 1249 |
+
attention_mask.unsqueeze(1).unsqueeze(-2),
|
| 1250 |
+
attention_mask.unsqueeze(1).unsqueeze(-1),
|
| 1251 |
+
) # bs, seq_len -> bs, 1, 1, seq_len; bs, 1, seq_len, 1 -> bs, 1, seq_len, seq_len
|
| 1252 |
+
attention_mask = torch.logical_and(diag_attention_mask, pad_attention_mask)
|
| 1253 |
+
attention_mask = attention_mask[:,:,cache_position] # [bs, 1, input_length, S]
|
| 1254 |
+
else:
|
| 1255 |
+
# used in Dream
|
| 1256 |
+
attention_mask = torch.logical_and(
|
| 1257 |
+
attention_mask.unsqueeze(1).unsqueeze(-2),
|
| 1258 |
+
attention_mask.unsqueeze(1).unsqueeze(-1),
|
| 1259 |
+
) # bs, seq_len -> bs, 1, 1, seq_len; bs, 1, seq_len, 1 -> bs, 1, seq_len, seq_len
|
| 1260 |
+
eye = torch.eye(attention_mask.size(-1), dtype=torch.bool, device=attention_mask.device) # [S, S]
|
| 1261 |
+
attention_mask = torch.logical_or(attention_mask, eye.unsqueeze(0).unsqueeze(0)) # [bs, 1, S, S]
|
| 1262 |
+
attention_mask = attention_mask[:,:,cache_position] # [bs, 1, input_length, S]
|
| 1263 |
+
else:
|
| 1264 |
+
raise ValueError(f"Attention mask shape length must be 2 or 4, but got {len(attention_mask.shape)}")
|
| 1265 |
+
|
| 1266 |
+
hidden_states = inputs_embeds
|
| 1267 |
+
|
| 1268 |
+
# create position embeddings to be shared across the decoder layers
|
| 1269 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 1270 |
+
|
| 1271 |
+
# decoder layers
|
| 1272 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1273 |
+
all_self_attns = () if output_attentions else None
|
| 1274 |
+
next_decoder_cache = None # not used in Dream
|
| 1275 |
+
|
| 1276 |
+
# Dimple.debug(
|
| 1277 |
+
# f"In {self.__class__}, before input into decoder layers, Cache is {use_cache}, past_key_values is {past_key_values}, cache position is {cache_position}."
|
| 1278 |
+
# )
|
| 1279 |
+
|
| 1280 |
+
for decoder_layer in self.layers:
|
| 1281 |
+
if output_hidden_states:
|
| 1282 |
+
all_hidden_states += (hidden_states,)
|
| 1283 |
+
|
| 1284 |
+
if self.gradient_checkpointing and self.training:
|
| 1285 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1286 |
+
decoder_layer.__call__,
|
| 1287 |
+
hidden_states,
|
| 1288 |
+
attention_mask,
|
| 1289 |
+
position_ids,
|
| 1290 |
+
past_key_values,
|
| 1291 |
+
output_attentions,
|
| 1292 |
+
use_cache,
|
| 1293 |
+
cache_position,
|
| 1294 |
+
position_embeddings,
|
| 1295 |
+
)
|
| 1296 |
+
else:
|
| 1297 |
+
layer_outputs = decoder_layer(
|
| 1298 |
+
hidden_states,
|
| 1299 |
+
attention_mask=attention_mask,
|
| 1300 |
+
position_ids=position_ids,
|
| 1301 |
+
past_key_value=past_key_values,
|
| 1302 |
+
output_attentions=output_attentions,
|
| 1303 |
+
use_cache=use_cache,
|
| 1304 |
+
cache_position=cache_position,
|
| 1305 |
+
position_embeddings=position_embeddings,
|
| 1306 |
+
)
|
| 1307 |
+
|
| 1308 |
+
hidden_states = layer_outputs[0]
|
| 1309 |
+
|
| 1310 |
+
# not used in Dream
|
| 1311 |
+
if use_cache:
|
| 1312 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1313 |
+
|
| 1314 |
+
if output_attentions:
|
| 1315 |
+
all_self_attns += (layer_outputs[1],)
|
| 1316 |
+
|
| 1317 |
+
hidden_states = self.norm(hidden_states)
|
| 1318 |
+
|
| 1319 |
+
# add hidden states from the last decoder layer
|
| 1320 |
+
if output_hidden_states:
|
| 1321 |
+
all_hidden_states += (hidden_states,)
|
| 1322 |
+
|
| 1323 |
+
# not used in Dream
|
| 1324 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1325 |
+
|
| 1326 |
+
if not return_dict:
|
| 1327 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns] if v is not None)
|
| 1328 |
+
return BaseModelOutputWithPast(
|
| 1329 |
+
last_hidden_state=hidden_states,
|
| 1330 |
+
past_key_values=next_cache,
|
| 1331 |
+
hidden_states=all_hidden_states,
|
| 1332 |
+
attentions=all_self_attns,
|
| 1333 |
+
)
|
| 1334 |
+
|
| 1335 |
+
Dimple_INPUTS_DOCSTRING = r"""
|
| 1336 |
+
Args:
|
| 1337 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1338 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1339 |
+
it.
|
| 1340 |
+
|
| 1341 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1342 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1343 |
+
|
| 1344 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1345 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1346 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1347 |
+
|
| 1348 |
+
- 1 for tokens that are **not masked**,
|
| 1349 |
+
- 0 for tokens that are **masked**.
|
| 1350 |
+
|
| 1351 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1352 |
+
|
| 1353 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1354 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1355 |
+
|
| 1356 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
| 1357 |
+
`past_key_values`).
|
| 1358 |
+
|
| 1359 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1360 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1361 |
+
information on the default strategy.
|
| 1362 |
+
|
| 1363 |
+
- 1 indicates the head is **not masked**,
|
| 1364 |
+
- 0 indicates the head is **masked**.
|
| 1365 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1366 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1367 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
| 1368 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 1369 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 1370 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
| 1371 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
| 1372 |
+
|
| 1373 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1374 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
| 1375 |
+
|
| 1376 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 1377 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 1378 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1379 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1380 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1381 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1382 |
+
model's internal embedding lookup matrix.
|
| 1383 |
+
use_cache (`bool`, *optional*):
|
| 1384 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1385 |
+
`past_key_values`).
|
| 1386 |
+
output_attentions (`bool`, *optional*):
|
| 1387 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1388 |
+
tensors for more detail.
|
| 1389 |
+
output_hidden_states (`bool`, *optional*):
|
| 1390 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1391 |
+
more detail.
|
| 1392 |
+
return_dict (`bool`, *optional*):
|
| 1393 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1394 |
+
pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
|
| 1395 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
| 1396 |
+
[`AutoImageProcessor`]. See [`DimpleImageProcessor.__call__`] for details. [`DimpleProcessor`] uses
|
| 1397 |
+
[`DimpleImageProcessor`] for processing images.
|
| 1398 |
+
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
| 1399 |
+
The tensors corresponding to the input videos. Pixel values can be obtained using
|
| 1400 |
+
[`AutoImageProcessor`]. See [`DimpleImageProcessor.__call__`] for details. [`DimpleProcessor`] uses
|
| 1401 |
+
[`DimpleImageProcessor`] for processing videos.
|
| 1402 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 1403 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 1404 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 1405 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 1406 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
| 1407 |
+
The rope index difference between sequence length and multimodal rope.
|
| 1408 |
+
"""
|
| 1409 |
+
|
| 1410 |
+
|
| 1411 |
+
class DimpleModel(DimpleGenerationMixin, DimplePreTrainedModel):
|
| 1412 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1413 |
+
|
| 1414 |
+
def __init__(self, config):
|
| 1415 |
+
super().__init__(config)
|
| 1416 |
+
self.visual = DimpleVisionTransformerPretrainedModel._from_config(config.vision_config)
|
| 1417 |
+
self.model = DimpleBaseModel(config)
|
| 1418 |
+
self.vocab_size = config.vocab_size
|
| 1419 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1420 |
+
self.img_projector = DimpleMultiModalProjector(config)
|
| 1421 |
+
# self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides # not specified in dream
|
| 1422 |
+
|
| 1423 |
+
# Initialize weights and apply final processing
|
| 1424 |
+
self.post_init()
|
| 1425 |
+
|
| 1426 |
+
def reset_rope_parameters(self):
|
| 1427 |
+
self.model.rotary_emb.reset_parameters()
|
| 1428 |
+
for layer in self.model.layers:
|
| 1429 |
+
layer.self_attn.rotary_emb.reset_parameters()
|
| 1430 |
+
|
| 1431 |
+
def get_input_embeddings(self):
|
| 1432 |
+
return self.model.embed_tokens
|
| 1433 |
+
|
| 1434 |
+
def set_input_embeddings(self, value):
|
| 1435 |
+
self.model.embed_tokens = value
|
| 1436 |
+
|
| 1437 |
+
def get_output_embeddings(self):
|
| 1438 |
+
return self.lm_head
|
| 1439 |
+
|
| 1440 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1441 |
+
self.lm_head = new_embeddings
|
| 1442 |
+
|
| 1443 |
+
def set_decoder(self, decoder):
|
| 1444 |
+
self.model = decoder
|
| 1445 |
+
|
| 1446 |
+
def get_decoder(self):
|
| 1447 |
+
return self.model
|
| 1448 |
+
|
| 1449 |
+
def get_rope_index(
|
| 1450 |
+
self,
|
| 1451 |
+
input_ids: torch.LongTensor,
|
| 1452 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 1453 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 1454 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1455 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 1456 |
+
"""
|
| 1457 |
+
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
|
| 1458 |
+
|
| 1459 |
+
Explanation:
|
| 1460 |
+
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
|
| 1461 |
+
|
| 1462 |
+
For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs.
|
| 1463 |
+
Examples:
|
| 1464 |
+
input_ids: [T T T T T], here T is for text.
|
| 1465 |
+
temporal position_ids: [0, 1, 2, 3, 4]
|
| 1466 |
+
height position_ids: [0, 1, 2, 3, 4]
|
| 1467 |
+
width position_ids: [0, 1, 2, 3, 4]
|
| 1468 |
+
|
| 1469 |
+
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
| 1470 |
+
and 1D rotary position embeddin for text part.
|
| 1471 |
+
Examples:
|
| 1472 |
+
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
|
| 1473 |
+
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
|
| 1474 |
+
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
|
| 1475 |
+
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
|
| 1476 |
+
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
| 1477 |
+
text temporal position_ids: [3, 4, 5, 6, 7]
|
| 1478 |
+
text height position_ids: [3, 4, 5, 6, 7]
|
| 1479 |
+
text width position_ids: [3, 4, 5, 6, 7]
|
| 1480 |
+
Here we calculate the text start position_ids as the max vision position_ids plus 1.
|
| 1481 |
+
|
| 1482 |
+
Args:
|
| 1483 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1484 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1485 |
+
it.
|
| 1486 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 1487 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 1488 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 1489 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 1490 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1491 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1492 |
+
|
| 1493 |
+
- 1 for tokens that are **not masked**,
|
| 1494 |
+
- 0 for tokens that are **masked**.
|
| 1495 |
+
|
| 1496 |
+
Returns:
|
| 1497 |
+
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
|
| 1498 |
+
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
|
| 1499 |
+
"""
|
| 1500 |
+
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
| 1501 |
+
image_token_id = self.config.image_token_id
|
| 1502 |
+
video_token_id = self.config.video_token_id
|
| 1503 |
+
vision_start_token_id = self.config.vision_start_token_id
|
| 1504 |
+
mrope_position_deltas = []
|
| 1505 |
+
if image_grid_thw is not None or video_grid_thw is not None:
|
| 1506 |
+
total_input_ids = input_ids
|
| 1507 |
+
if attention_mask is None:
|
| 1508 |
+
attention_mask = torch.ones_like(total_input_ids)
|
| 1509 |
+
position_ids = torch.ones(
|
| 1510 |
+
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
|
| 1511 |
+
)
|
| 1512 |
+
image_index, video_index = 0, 0
|
| 1513 |
+
for i, input_ids in enumerate(total_input_ids):
|
| 1514 |
+
input_ids = input_ids[attention_mask[i] == 1]
|
| 1515 |
+
image_nums, video_nums = 0, 0
|
| 1516 |
+
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
|
| 1517 |
+
vision_tokens = input_ids[vision_start_indices + 1]
|
| 1518 |
+
image_nums = (vision_tokens == image_token_id).sum()
|
| 1519 |
+
video_nums = (vision_tokens == video_token_id).sum()
|
| 1520 |
+
input_tokens = input_ids.tolist()
|
| 1521 |
+
llm_pos_ids_list: list = []
|
| 1522 |
+
st = 0
|
| 1523 |
+
remain_images, remain_videos = image_nums, video_nums
|
| 1524 |
+
for _ in range(image_nums + video_nums):
|
| 1525 |
+
if image_token_id in input_tokens and remain_images > 0:
|
| 1526 |
+
ed_image = input_tokens.index(image_token_id, st)
|
| 1527 |
+
else:
|
| 1528 |
+
ed_image = len(input_tokens) + 1
|
| 1529 |
+
if video_token_id in input_tokens and remain_videos > 0:
|
| 1530 |
+
ed_video = input_tokens.index(video_token_id, st)
|
| 1531 |
+
else:
|
| 1532 |
+
ed_video = len(input_tokens) + 1
|
| 1533 |
+
if ed_image < ed_video:
|
| 1534 |
+
t, h, w = (
|
| 1535 |
+
image_grid_thw[image_index][0],
|
| 1536 |
+
image_grid_thw[image_index][1],
|
| 1537 |
+
image_grid_thw[image_index][2],
|
| 1538 |
+
)
|
| 1539 |
+
image_index += 1
|
| 1540 |
+
remain_images -= 1
|
| 1541 |
+
ed = ed_image
|
| 1542 |
+
else:
|
| 1543 |
+
t, h, w = (
|
| 1544 |
+
video_grid_thw[video_index][0],
|
| 1545 |
+
video_grid_thw[video_index][1],
|
| 1546 |
+
video_grid_thw[video_index][2],
|
| 1547 |
+
)
|
| 1548 |
+
video_index += 1
|
| 1549 |
+
remain_videos -= 1
|
| 1550 |
+
ed = ed_video
|
| 1551 |
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
| 1552 |
+
t.item(),
|
| 1553 |
+
h.item() // spatial_merge_size,
|
| 1554 |
+
w.item() // spatial_merge_size,
|
| 1555 |
+
)
|
| 1556 |
+
text_len = ed - st
|
| 1557 |
+
|
| 1558 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 1559 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 1560 |
+
|
| 1561 |
+
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
| 1562 |
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
| 1563 |
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
| 1564 |
+
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
| 1565 |
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
| 1566 |
+
|
| 1567 |
+
if st < len(input_tokens):
|
| 1568 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 1569 |
+
text_len = len(input_tokens) - st
|
| 1570 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 1571 |
+
|
| 1572 |
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
| 1573 |
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
| 1574 |
+
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
|
| 1575 |
+
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
|
| 1576 |
+
return position_ids, mrope_position_deltas
|
| 1577 |
+
else:
|
| 1578 |
+
if attention_mask is not None:
|
| 1579 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1580 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1581 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device)
|
| 1582 |
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
| 1583 |
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
| 1584 |
+
else:
|
| 1585 |
+
position_ids = (
|
| 1586 |
+
torch.arange(input_ids.shape[1], device=input_ids.device)
|
| 1587 |
+
.view(1, 1, -1)
|
| 1588 |
+
.expand(3, input_ids.shape[0], -1)
|
| 1589 |
+
)
|
| 1590 |
+
mrope_position_deltas = torch.zeros(
|
| 1591 |
+
[input_ids.shape[0], 1],
|
| 1592 |
+
device=input_ids.device,
|
| 1593 |
+
dtype=input_ids.dtype,
|
| 1594 |
+
)
|
| 1595 |
+
|
| 1596 |
+
return position_ids, mrope_position_deltas
|
| 1597 |
+
|
| 1598 |
+
@add_start_docstrings_to_model_forward(Dimple_INPUTS_DOCSTRING)
|
| 1599 |
+
@replace_return_docstrings(output_type=DimpleModelOutput, config_class=_CONFIG_FOR_DOC)
|
| 1600 |
+
def forward(
|
| 1601 |
+
self,
|
| 1602 |
+
input_ids: torch.LongTensor = None,
|
| 1603 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1604 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1605 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1606 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1607 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1608 |
+
use_cache: Optional[bool] = None,
|
| 1609 |
+
output_attentions: Optional[bool] = None,
|
| 1610 |
+
output_hidden_states: Optional[bool] = None,
|
| 1611 |
+
return_dict: Optional[bool] = None,
|
| 1612 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 1613 |
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
| 1614 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 1615 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 1616 |
+
rope_deltas: Optional[torch.LongTensor] = None,
|
| 1617 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1618 |
+
num_logits_to_keep: int = 0,
|
| 1619 |
+
**loss_kwargs,
|
| 1620 |
+
) -> Union[Tuple, DimpleModelOutput]:
|
| 1621 |
+
r"""
|
| 1622 |
+
Args:
|
| 1623 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1624 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1625 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1626 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1627 |
+
|
| 1628 |
+
Returns:
|
| 1629 |
+
|
| 1630 |
+
Example:
|
| 1631 |
+
|
| 1632 |
+
```python
|
| 1633 |
+
>>> from PIL import Image
|
| 1634 |
+
>>> import requests
|
| 1635 |
+
>>> from transformers import AutoProcessor, DimpleForConditionalGeneration
|
| 1636 |
+
|
| 1637 |
+
>>> model = DimpleForConditionalGeneration.from_pretrained(" ")
|
| 1638 |
+
>>> processor = AutoProcessor.from_pretrained(" ")
|
| 1639 |
+
|
| 1640 |
+
>>> messages = [
|
| 1641 |
+
{
|
| 1642 |
+
"role": "user",
|
| 1643 |
+
"content": [
|
| 1644 |
+
{"type": "image"},
|
| 1645 |
+
{"type": "text", "text": "What is shown in this image?"},
|
| 1646 |
+
],
|
| 1647 |
+
},
|
| 1648 |
+
]
|
| 1649 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
| 1650 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1651 |
+
|
| 1652 |
+
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 1653 |
+
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
| 1654 |
+
|
| 1655 |
+
>>> # Generate
|
| 1656 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1657 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1658 |
+
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
| 1659 |
+
```"""
|
| 1660 |
+
# logger.warning_once(
|
| 1661 |
+
# f"In {self.__class__}, Cache is {use_cache}, past_key_values is {past_key_values}, cache position is {cache_position}."
|
| 1662 |
+
# )
|
| 1663 |
+
|
| 1664 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1665 |
+
output_hidden_states = (
|
| 1666 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1667 |
+
)
|
| 1668 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1669 |
+
|
| 1670 |
+
if inputs_embeds is None:
|
| 1671 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
| 1672 |
+
if pixel_values is not None:
|
| 1673 |
+
pixel_values = pixel_values.type(self.visual.get_dtype())
|
| 1674 |
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
| 1675 |
+
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
| 1676 |
+
n_image_features = image_embeds.shape[0]
|
| 1677 |
+
if n_image_tokens != n_image_features:
|
| 1678 |
+
raise ValueError(
|
| 1679 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
| 1680 |
+
)
|
| 1681 |
+
image_mask = (
|
| 1682 |
+
(input_ids == self.config.image_token_id)
|
| 1683 |
+
.unsqueeze(-1)
|
| 1684 |
+
.expand_as(inputs_embeds)
|
| 1685 |
+
.to(inputs_embeds.device)
|
| 1686 |
+
)
|
| 1687 |
+
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 1688 |
+
image_embeds_projected = self.img_projector(image_embeds)
|
| 1689 |
+
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds_projected)
|
| 1690 |
+
|
| 1691 |
+
if pixel_values_videos is not None:
|
| 1692 |
+
pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
|
| 1693 |
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
| 1694 |
+
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
| 1695 |
+
n_video_features = video_embeds.shape[0]
|
| 1696 |
+
if n_video_tokens != n_video_features:
|
| 1697 |
+
raise ValueError(
|
| 1698 |
+
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
| 1699 |
+
)
|
| 1700 |
+
video_mask = (
|
| 1701 |
+
(input_ids == self.config.video_token_id)
|
| 1702 |
+
.unsqueeze(-1)
|
| 1703 |
+
.expand_as(inputs_embeds)
|
| 1704 |
+
.to(inputs_embeds.device)
|
| 1705 |
+
)
|
| 1706 |
+
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 1707 |
+
raise NotImplementedError(
|
| 1708 |
+
"Video feature projector not implemented"
|
| 1709 |
+
)
|
| 1710 |
+
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
| 1711 |
+
|
| 1712 |
+
if attention_mask is not None:
|
| 1713 |
+
attention_mask = attention_mask.to(inputs_embeds.device)
|
| 1714 |
+
|
| 1715 |
+
outputs = self.model(
|
| 1716 |
+
input_ids=None, # in Qwen
|
| 1717 |
+
# input_ids=input_ids,# in Dream
|
| 1718 |
+
attention_mask=attention_mask,
|
| 1719 |
+
position_ids=position_ids,
|
| 1720 |
+
past_key_values=past_key_values,
|
| 1721 |
+
inputs_embeds=inputs_embeds,
|
| 1722 |
+
use_cache=use_cache,
|
| 1723 |
+
output_attentions=output_attentions,
|
| 1724 |
+
output_hidden_states=output_hidden_states,
|
| 1725 |
+
return_dict=return_dict,
|
| 1726 |
+
cache_position=cache_position,
|
| 1727 |
+
)
|
| 1728 |
+
|
| 1729 |
+
hidden_states = outputs[0]
|
| 1730 |
+
# in Qwen
|
| 1731 |
+
logits = self.lm_head(hidden_states)
|
| 1732 |
+
# in Dream
|
| 1733 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1734 |
+
# logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
| 1735 |
+
|
| 1736 |
+
|
| 1737 |
+
loss = None
|
| 1738 |
+
if labels is not None:
|
| 1739 |
+
logger.warning_once(
|
| 1740 |
+
"Use the naive next token prediction loss for the model. This is not the same as the original Dimple model, which uses a different loss function."
|
| 1741 |
+
)
|
| 1742 |
+
# in Qwen
|
| 1743 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
| 1744 |
+
logits = logits.float()
|
| 1745 |
+
# Shift so that tokens < n predict n
|
| 1746 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1747 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1748 |
+
# Flatten the tokens
|
| 1749 |
+
loss_fct = CrossEntropyLoss()
|
| 1750 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1751 |
+
shift_labels = shift_labels.view(-1)
|
| 1752 |
+
# Enable model parallelism
|
| 1753 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1754 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1755 |
+
# in Dream
|
| 1756 |
+
# loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
| 1757 |
+
|
| 1758 |
+
if not return_dict:
|
| 1759 |
+
output = (logits,) + outputs[1:]
|
| 1760 |
+
return (loss,) + output if loss is not None else output
|
| 1761 |
+
|
| 1762 |
+
return DimpleModelOutput(
|
| 1763 |
+
logits=logits,
|
| 1764 |
+
loss=loss,
|
| 1765 |
+
past_key_values=outputs.past_key_values,
|
| 1766 |
+
hidden_states=outputs.hidden_states,
|
| 1767 |
+
attentions=outputs.attentions,
|
| 1768 |
+
rope_deltas=rope_deltas,
|
| 1769 |
+
)
|
| 1770 |
+
|
| 1771 |
+
def prepare_inputs_for_generation(
|
| 1772 |
+
self,
|
| 1773 |
+
input_ids,
|
| 1774 |
+
past_key_values=None,
|
| 1775 |
+
attention_mask=None,
|
| 1776 |
+
inputs_embeds=None,
|
| 1777 |
+
cache_position=None,
|
| 1778 |
+
position_ids=None,
|
| 1779 |
+
use_cache=True,
|
| 1780 |
+
pixel_values=None,
|
| 1781 |
+
pixel_values_videos=None,
|
| 1782 |
+
image_grid_thw=None,
|
| 1783 |
+
video_grid_thw=None,
|
| 1784 |
+
rope_deltas = None,
|
| 1785 |
+
**kwargs,
|
| 1786 |
+
):
|
| 1787 |
+
# never remove input ids
|
| 1788 |
+
|
| 1789 |
+
if use_cache:
|
| 1790 |
+
if past_key_values is None:
|
| 1791 |
+
raise ValueError(
|
| 1792 |
+
"If `use_cache=True`, `past_key_values` must be provided. Please make sure to pass `past_key_values` to the model."
|
| 1793 |
+
)
|
| 1794 |
+
else:
|
| 1795 |
+
pass
|
| 1796 |
+
else:
|
| 1797 |
+
past_key_values = None
|
| 1798 |
+
|
| 1799 |
+
if use_cache:
|
| 1800 |
+
if cache_position is None:
|
| 1801 |
+
raise ValueError(
|
| 1802 |
+
"If `use_cache=True`, `cache_position` must be provided. Please make sure to pass `cache_position` to the model."
|
| 1803 |
+
)
|
| 1804 |
+
else:
|
| 1805 |
+
pass
|
| 1806 |
+
else:
|
| 1807 |
+
cache_position = None
|
| 1808 |
+
|
| 1809 |
+
if use_cache:
|
| 1810 |
+
if input_ids.shape[1] != cache_position.shape[0]:
|
| 1811 |
+
input_ids = input_ids[:, cache_position]
|
| 1812 |
+
else:
|
| 1813 |
+
pass
|
| 1814 |
+
else:
|
| 1815 |
+
pass
|
| 1816 |
+
|
| 1817 |
+
if position_ids is None:
|
| 1818 |
+
if not use_cache:
|
| 1819 |
+
position_ids, rope_deltas = self.get_rope_index(
|
| 1820 |
+
input_ids, image_grid_thw, video_grid_thw, attention_mask
|
| 1821 |
+
)
|
| 1822 |
+
else:
|
| 1823 |
+
if cache_position[0] == 0:
|
| 1824 |
+
position_ids, rope_deltas = self.get_rope_index(
|
| 1825 |
+
input_ids, image_grid_thw, video_grid_thw, attention_mask
|
| 1826 |
+
)
|
| 1827 |
+
else:
|
| 1828 |
+
batch_size, seq_length = input_ids.shape
|
| 1829 |
+
delta = (
|
| 1830 |
+
cache_position[0] + rope_deltas if cache_position is not None and rope_deltas is not None else 0
|
| 1831 |
+
)
|
| 1832 |
+
position_ids = torch.arange(seq_length, device=input_ids.device)
|
| 1833 |
+
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
| 1834 |
+
position_ids = position_ids.add(delta)
|
| 1835 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
| 1836 |
+
|
| 1837 |
+
else:
|
| 1838 |
+
raise NotImplementedError(
|
| 1839 |
+
"position_ids is not None, please check the code in prepare_inputs_for_generation"
|
| 1840 |
+
)
|
| 1841 |
+
|
| 1842 |
+
if use_cache:
|
| 1843 |
+
if cache_position[0] != 0:
|
| 1844 |
+
pixel_values = None
|
| 1845 |
+
pixel_values_videos = None
|
| 1846 |
+
logger.debug(f"after prefill, the pixel_values and pixel_values_videos are None.")
|
| 1847 |
+
else:
|
| 1848 |
+
pass
|
| 1849 |
+
|
| 1850 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1851 |
+
if inputs_embeds is not None:
|
| 1852 |
+
raise NotImplementedError(
|
| 1853 |
+
"inputs_embeds is not None, please check the code in prepare_inputs_for_generation"
|
| 1854 |
+
)
|
| 1855 |
+
else:
|
| 1856 |
+
model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
|
| 1857 |
+
|
| 1858 |
+
model_inputs.update(
|
| 1859 |
+
{
|
| 1860 |
+
"position_ids": position_ids,
|
| 1861 |
+
"past_key_values": past_key_values,
|
| 1862 |
+
"use_cache": use_cache,
|
| 1863 |
+
"attention_mask": attention_mask,
|
| 1864 |
+
"pixel_values": pixel_values,
|
| 1865 |
+
"pixel_values_videos": pixel_values_videos,
|
| 1866 |
+
"image_grid_thw": image_grid_thw,
|
| 1867 |
+
"video_grid_thw": video_grid_thw,
|
| 1868 |
+
"cache_position": cache_position,
|
| 1869 |
+
"rope_deltas": rope_deltas,
|
| 1870 |
+
}
|
| 1871 |
+
)
|
| 1872 |
+
return model_inputs
|