Update README.md
Browse files
README.md
CHANGED
|
@@ -39,17 +39,62 @@ The model generates the repository in the following format, Code to parse it and
|
|
| 39 |
import torch
|
| 40 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 41 |
import fire
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def load_model(model_path):
|
| 48 |
"""
|
| 49 |
Load the model and tokenizer from the specified path.
|
| 50 |
"""
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 52 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto")
|
|
|
|
| 53 |
return model, tokenizer
|
| 54 |
|
| 55 |
|
|
@@ -57,12 +102,25 @@ def main(model_path:str="./models_dir/repo_coder_v1"):
|
|
| 57 |
print(f"Loaded model from {model_path}.")
|
| 58 |
|
| 59 |
input = tokenizer(input_prompt, return_tensors="pt").to(model.device)
|
| 60 |
-
print(input)
|
| 61 |
with torch.no_grad():
|
| 62 |
output = model.generate(**input, max_length=1024, do_sample=True, temperature=0.9, top_p=0.95, top_k=50)
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
if __name__ == "__main__":
|
| 67 |
fire.Fire(main)
|
|
|
|
| 68 |
```
|
|
|
|
| 39 |
import torch
|
| 40 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 41 |
import fire
|
| 42 |
+
from pathlib import Path
|
| 43 |
+
import os
|
| 44 |
+
import re
|
| 45 |
+
|
| 46 |
+
def generate_repo_from_string(input_str: str, output_dir: str) -> None:
|
| 47 |
+
"""
|
| 48 |
+
Parse <output> tags in the input string and write files (and bashfiles) to the specified output directory.
|
| 49 |
+
|
| 50 |
+
- Searches for <output>...</output> section.
|
| 51 |
+
- Within that, finds all <fileX> or <bashfile> tags:
|
| 52 |
+
<file1>path/to/file.ext<content>...file content...</content></file1>
|
| 53 |
+
<bashfile>script.sh<content>...script content...</content></bashfile>
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
input_str: The full string containing <output> markup.
|
| 57 |
+
output_dir: Directory where files will be created. Existing files will be overwritten.
|
| 58 |
+
"""
|
| 59 |
+
# Extract the content inside <output>...</output>
|
| 60 |
+
out_match = re.search(r"<output>(.*?)</output>", input_str, re.DOTALL)
|
| 61 |
+
if not out_match:
|
| 62 |
+
raise ValueError("No <output> section found in input.")
|
| 63 |
+
output_section = out_match.group(1)
|
| 64 |
+
|
| 65 |
+
# Regex to find file tags: file1, file2, file3, ... and bashfile
|
| 66 |
+
pattern = re.compile(
|
| 67 |
+
r"<(file\d+|bashfile)>([^<]+?)<content>(.*?)</content></\1>",
|
| 68 |
+
re.DOTALL
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
for tag, filename, content in pattern.findall(output_section):
|
| 72 |
+
# Determine full path
|
| 73 |
+
file_path = os.path.join(output_dir, filename.strip())
|
| 74 |
+
# Ensure parent directory exists
|
| 75 |
+
parent = os.path.dirname(file_path)
|
| 76 |
+
if parent:
|
| 77 |
+
os.makedirs(parent, exist_ok=True)
|
| 78 |
+
# Write content to file
|
| 79 |
+
with open(file_path, 'w', encoding='utf-8') as f:
|
| 80 |
+
# Strip only one leading newline if present
|
| 81 |
+
f.write(content.lstrip('\n'))
|
| 82 |
+
|
| 83 |
+
print(f"Repository generated at: {output_dir}")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def main(model_path:str="./models_dir/repo_coder_v1",
|
| 87 |
+
prompt:str="Generate a small python repo for matplotlib to visualize timeseries data to read from timeseries.csv file using polars."
|
| 88 |
+
,output_path="./output_dir/demo2"):
|
| 89 |
+
input_prompt = "###Instruction: {prompt}".format(prompt=prompt)
|
| 90 |
|
| 91 |
def load_model(model_path):
|
| 92 |
"""
|
| 93 |
Load the model and tokenizer from the specified path.
|
| 94 |
"""
|
| 95 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 96 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto").to("cuda:0")
|
| 97 |
+
model.eval()
|
| 98 |
return model, tokenizer
|
| 99 |
|
| 100 |
|
|
|
|
| 102 |
print(f"Loaded model from {model_path}.")
|
| 103 |
|
| 104 |
input = tokenizer(input_prompt, return_tensors="pt").to(model.device)
|
|
|
|
| 105 |
with torch.no_grad():
|
| 106 |
output = model.generate(**input, max_length=1024, do_sample=True, temperature=0.9, top_p=0.95, top_k=50)
|
| 107 |
+
generated_code_repo = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 108 |
+
print(f"Generated code repo: {generated_code_repo}")
|
| 109 |
+
Path(output_path).mkdir(parents=True, exist_ok=True)
|
| 110 |
+
generate_repo_from_string(generated_code_repo, output_path)
|
| 111 |
+
|
| 112 |
+
def list_files(startpath):
|
| 113 |
+
for root, dirs, files in os.walk(startpath):
|
| 114 |
+
level = root.replace(startpath, '').count(os.sep)
|
| 115 |
+
indent = ' ' * 4 * (level)
|
| 116 |
+
print('{}{}/'.format(indent, os.path.basename(root)))
|
| 117 |
+
subindent = ' ' * 4 * (level + 1)
|
| 118 |
+
for f in files:
|
| 119 |
+
print('{}{}'.format(subindent, f))
|
| 120 |
+
list_files(output_path)
|
| 121 |
+
|
| 122 |
|
| 123 |
if __name__ == "__main__":
|
| 124 |
fire.Fire(main)
|
| 125 |
+
|
| 126 |
```
|