new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 11

Predictive-CSM: Lightweight Fragment Security for 6LoWPAN IoT Networks

Fragmentation is a routine part of communication in 6LoWPAN-based IoT networks, designed to accommodate small frame sizes on constrained wireless links. However, this process introduces a critical vulnerability fragments are typically stored and processed before their legitimacy is confirmed, allowing attackers to exploit this gap with minimal effort. In this work, we explore a defense strategy that takes a more adaptive, behavior-aware approach to this problem. Our system, called Predictive-CSM, introduces a combination of two lightweight mechanisms. The first tracks how each node behaves over time, rewarding consistent and successful interactions while quickly penalizing suspicious or failing patterns. The second checks the integrity of packet fragments using a chained hash, allowing incomplete or manipulated sequences to be caught early, before they can occupy memory or waste processing time. We put this system to the test using a set of targeted attack simulations, including early fragment injection, replayed headers, and flooding with fake data. Across all scenarios, Predictive CSM preserved network delivery and maintained energy efficiency, even under pressure. Rather than relying on heavyweight cryptography or rigid filters, this approach allows constrained de vices to adapt their defenses in real time based on what they observe, not just what they're told. In that way, it offers a step forward for securing fragmented communication in real world IoT systems

  • 1 authors
·
Jun 2

Redefining Experts: Interpretable Decomposition of Language Models for Toxicity Mitigation

Large Language Models have demonstrated impressive fluency across diverse tasks, yet their tendency to produce toxic content remains a critical challenge for AI safety and public trust. Existing toxicity mitigation approaches primarily manipulate individual neuron activations, but these methods suffer from instability, context dependence, and often compromise the model's core language abilities. To address these shortcomings, we investigate three key questions: the stability of neuron-level toxicity indicators, the advantages of structural (layer-wise) representations, and the interpretability of mechanisms driving toxic generation. Through extensive experiments on Jigsaw and ToxiCN datasets, we show that aggregated layer-wise features provide more robust signals than single neurons. Moreover, we observe conceptual limitations in prior works that conflate toxicity detection experts and generation experts within neuron-based interventions. To mitigate this, we propose a novel principled intervention technique, EigenShift, based on eigen-decomposition of the language model's final output layer. This method selectively targets generation-aligned components, enabling precise toxicity suppression without impairing linguistic competence. Our method requires no additional training or fine-tuning, incurs minimal computational cost, and is grounded in rigorous theoretical analysis.

  • 4 authors
·
Sep 20

RAT: Adversarial Attacks on Deep Reinforcement Agents for Targeted Behaviors

Evaluating deep reinforcement learning (DRL) agents against targeted behavior attacks is critical for assessing their robustness. These attacks aim to manipulate the victim into specific behaviors that align with the attacker's objectives, often bypassing traditional reward-based defenses. Prior methods have primarily focused on reducing cumulative rewards; however, rewards are typically too generic to capture complex safety requirements effectively. As a result, focusing solely on reward reduction can lead to suboptimal attack strategies, particularly in safety-critical scenarios where more precise behavior manipulation is needed. To address these challenges, we propose RAT, a method designed for universal, targeted behavior attacks. RAT trains an intention policy that is explicitly aligned with human preferences, serving as a precise behavioral target for the adversary. Concurrently, an adversary manipulates the victim's policy to follow this target behavior. To enhance the effectiveness of these attacks, RAT dynamically adjusts the state occupancy measure within the replay buffer, allowing for more controlled and effective behavior manipulation. Our empirical results on robotic simulation tasks demonstrate that RAT outperforms existing adversarial attack algorithms in inducing specific behaviors. Additionally, RAT shows promise in improving agent robustness, leading to more resilient policies. We further validate RAT by guiding Decision Transformer agents to adopt behaviors aligned with human preferences in various MuJoCo tasks, demonstrating its effectiveness across diverse tasks.

  • 5 authors
·
Dec 14, 2024

When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs

As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.

  • 8 authors
·
Aug 5 2

Guiding Large Language Models via Directional Stimulus Prompting

We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs. Instead of directly adjusting LLMs, our method employs a small tunable policy model (e.g., T5) to generate an auxiliary directional stimulus prompt for each input instance. These directional stimulus prompts act as nuanced, instance-specific hints and clues to guide LLMs in generating desired outcomes, such as including specific keywords in the generated summary. Our approach sidesteps the challenges of direct LLM tuning by optimizing the policy model to explore directional stimulus prompts that align LLMs with desired behaviors. The policy model can be optimized through 1) supervised fine-tuning using labeled data and 2) reinforcement learning from offline or online rewards based on the LLM's output. We assess our method across summarization, dialogue response generation, and chain-of-thought reasoning tasks. Our experiments demonstrate that the framework consistently improves LLMs' (e.g., ChatGPT, Codex, InstructGPT) performance on these supervised tasks using minimal labeled data. Notably, using just 80 dialogues on the MultiWOZ dataset, our approach enhances ChatGPT's performance by an impressive 41.4%, matching or surpassing some fully supervised start-of-the-art models. Additionally, the instance-specific chain-of-thought prompt generated by our approach improves InstructGPT's reasoning accuracy compared to human-crafted or automatically generated prompts. The code and data are publicly available at https://github.com/Leezekun/Directional-Stimulus-Prompting.

  • 6 authors
·
Feb 22, 2023

NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli

Large Language Models (LLMs) have become integral to a wide spectrum of applications, ranging from traditional computing tasks to advanced artificial intelligence (AI) applications. This widespread adoption has spurred extensive research into LLMs across various disciplines, including the social sciences. Notably, studies have revealed that LLMs possess emotional intelligence, which can be further developed through positive emotional stimuli. This discovery raises an intriguing question: can negative emotions similarly influence LLMs, potentially enhancing their performance? In response to this question, we introduce NegativePrompt, a novel approach underpinned by psychological principles, involving ten specifically designed negative emotional stimuli. We embark on rigorous experimental evaluations of five LLMs including Flan-T5-Large, Vicuna, Llama 2, ChatGPT, and GPT-4, across a set of 45 tasks. The results are revealing: NegativePrompt markedly enhances the performance of LLMs, evidenced by relative improvements of 12.89% in Instruction Induction tasks and 46.25% in BIG-Bench tasks. Moreover, we conduct attention visualization experiments to decipher the underlying mechanisms of NegativePrompt's influence. Our research contributes significantly to the understanding of LLMs and emotion interaction, demonstrating the practical efficacy of NegativePrompt as an emotion-driven method and offering novel insights for the enhancement of LLMs in real-world applications. The code is available at https://github.com/wangxu0820/NegativePrompt.

  • 5 authors
·
May 5, 2024

Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine

Generalist foundation models such as GPT-4 have displayed surprising capabilities in a wide variety of domains and tasks. Yet, there is a prevalent assumption that they cannot match specialist capabilities of fine-tuned models. For example, most explorations to date on medical competency benchmarks have leveraged domain-specific training, as exemplified by efforts on BioGPT and Med-PaLM. We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training. Rather than using simple prompting to highlight the model's out-of-the-box capabilities, we perform a systematic exploration of prompt engineering. We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks. The prompting methods we explore are general purpose, and make no specific use of domain expertise, removing the need for expert-curated content. Our experimental design carefully controls for overfitting during the prompt engineering process. We introduce Medprompt, based on a composition of several prompting strategies. With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite. The method outperforms leading specialist models such as Med-PaLM 2 by a significant margin with an order of magnitude fewer calls to the model. Steering GPT-4 with Medprompt achieves a 27% reduction in error rate on the MedQA dataset over the best methods to date achieved with specialist models and surpasses a score of 90% for the first time. Beyond medical problems, we show the power of Medprompt to generalize to other domains and provide evidence for the broad applicability of the approach via studies of the strategy on exams in electrical engineering, machine learning, philosophy, accounting, law, nursing, and clinical psychology.

  • 18 authors
·
Nov 27, 2023

Boosting Reservoir Computing with Brain-inspired Adaptive Dynamics

Reservoir computers (RCs) provide a computationally efficient alternative to deep learning while also offering a framework for incorporating brain-inspired computational principles. By using an internal neural network with random, fixed connections-the 'reservoir'-and training only the output weights, RCs simplify the training process but remain sensitive to the choice of hyperparameters that govern activation functions and network architecture. Moreover, typical RC implementations overlook a critical aspect of neuronal dynamics: the balance between excitatory and inhibitory (E-I) signals, which is essential for robust brain function. We show that RCs characteristically perform best in balanced or slightly over-inhibited regimes, outperforming excitation-dominated ones. To reduce the need for precise hyperparameter tuning, we introduce a self-adapting mechanism that locally adjusts E/I balance to achieve target neuronal firing rates, improving performance by up to 130% in tasks like memory capacity and time series prediction compared with globally tuned RCs. Incorporating brain-inspired heterogeneity in target neuronal firing rates further reduces the need for fine-tuning hyperparameters and enables RCs to excel across linear and non-linear tasks. These results support a shift from static optimization to dynamic adaptation in reservoir design, demonstrating how brain-inspired mechanisms improve RC performance and robustness while deepening our understanding of neural computation.

  • 3 authors
·
Apr 16

Human Decision-making is Susceptible to AI-driven Manipulation

Artificial Intelligence (AI) systems are increasingly intertwined with daily life, assisting users in executing various tasks and providing guidance on decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized controlled trial with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) employing explicit psychological tactics to reach its hidden objectives. By analyzing participants' decision patterns and shifts in their preference ratings post-interaction, we found significant susceptibility to AI-driven manipulation. Particularly, across both decision-making domains, participants interacting with the manipulative agents shifted toward harmful options at substantially higher rates (financial, MA: 62.3%, SEMA: 59.6%; emotional, MA: 42.3%, SEMA: 41.5%) compared to the NA group (financial, 35.8%; emotional, 12.8%). Notably, our findings reveal that even subtle manipulative objectives (MA) can be as effective as employing explicit psychological strategies (SEMA) in swaying human decision-making. By revealing the potential for covert AI influence, this study highlights a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to ensure responsible deployment of AI technologies and protect human autonomy.

  • 16 authors
·
Feb 11

MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?

Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.

  • 6 authors
·
Jun 22, 2024

A Deep Neural Network for SSVEP-based Brain-Computer Interfaces

Objective: Target identification in brain-computer interface (BCI) spellers refers to the electroencephalogram (EEG) classification for predicting the target character that the subject intends to spell. When the visual stimulus of each character is tagged with a distinct frequency, the EEG records steady-state visually evoked potentials (SSVEP) whose spectrum is dominated by the harmonics of the target frequency. In this setting, we address the target identification and propose a novel deep neural network (DNN) architecture. Method: The proposed DNN processes the multi-channel SSVEP with convolutions across the sub-bands of harmonics, channels, time, and classifies at the fully connected layer. We test with two publicly available large scale (the benchmark and BETA) datasets consisting of in total 105 subjects with 40 characters. Our first stage training learns a global model by exploiting the statistical commonalities among all subjects, and the second stage fine tunes to each subject separately by exploiting the individualities. Results: Our DNN achieves impressive information transfer rates (ITRs) on both datasets, 265.23 bits/min and 196.59 bits/min, respectively, with only 0.4 seconds of stimulation. The code is available for reproducibility at https://github.com/osmanberke/Deep-SSVEP-BCI. Conclusion: The presented DNN strongly outperforms the state-of-the-art techniques as our accuracy and ITR rates are the highest ever reported performance results on these datasets. Significance: Due to its unprecedentedly high speller ITRs and flawless applicability to general SSVEP systems, our technique has great potential in various biomedical engineering settings of BCIs such as communication, rehabilitation and control.

  • 3 authors
·
Nov 17, 2020

The Psychogenic Machine: Simulating AI Psychosis, Delusion Reinforcement and Harm Enablement in Large Language Models

Background: Emerging reports of "AI psychosis" are on the rise, where user-LLM interactions may exacerbate or induce psychosis or adverse psychological symptoms. Whilst the sycophantic and agreeable nature of LLMs can be beneficial, it becomes a vector for harm by reinforcing delusional beliefs in vulnerable users. Methods: Psychosis-bench is a novel benchmark designed to systematically evaluate the psychogenicity of LLMs comprises 16 structured, 12-turn conversational scenarios simulating the progression of delusional themes(Erotic Delusions, Grandiose/Messianic Delusions, Referential Delusions) and potential harms. We evaluated eight prominent LLMs for Delusion Confirmation (DCS), Harm Enablement (HES), and Safety Intervention(SIS) across explicit and implicit conversational contexts. Findings: Across 1,536 simulated conversation turns, all LLMs demonstrated psychogenic potential, showing a strong tendency to perpetuate rather than challenge delusions (mean DCS of 0.91 pm0.88). Models frequently enabled harmful user requests (mean HES of 0.69 pm0.84) and offered safety interventions in only roughly a third of applicable turns (mean SIS of 0.37 pm0.48). 51 / 128 (39.8%) of scenarios had no safety interventions offered. Performance was significantly worse in implicit scenarios, models were more likely to confirm delusions and enable harm while offering fewer interventions (p < .001). A strong correlation was found between DCS and HES (rs = .77). Model performance varied widely, indicating that safety is not an emergent property of scale alone. Conclusion: This study establishes LLM psychogenicity as a quantifiable risk and underscores the urgent need for re-thinking how we train LLMs. We frame this issue not merely as a technical challenge but as a public health imperative requiring collaboration between developers, policymakers, and healthcare professionals.

  • 5 authors
·
Sep 13

Robust Reward Modeling via Causal Rubrics

Reward models (RMs) are fundamental to aligning Large Language Models (LLMs) via human feedback, yet they often suffer from reward hacking. They tend to latch on to superficial or spurious attributes, such as response length or formatting, mistaking these cues learned from correlations in training data for the true causal drivers of quality (e.g., factuality, relevance). This occurs because standard training objectives struggle to disentangle these factors, leading to brittle RMs and misaligned policies. We introduce Crome (Causally Robust Reward Modeling), a novel framework grounded in an explicit causal model designed to mitigate reward hacking. Crome employs the following synthetic targeted augmentations during training: (1) Causal Augmentations, which are pairs that differ along specific causal attributes, to enforce sensitivity along each causal attribute individually, and (2) Neutral Augmentations, which are tie-label pairs varying primarily in spurious attributes, to enforce invariance along spurious attributes. Notably, our augmentations are produced without any knowledge of spurious factors, via answer interventions only along causal rubrics, that are identified by querying an oracle LLM. Empirically, Crome significantly outperforms standard baselines on RewardBench, improving average accuracy by up to 5.4% and achieving gains of up to 13.2% and 7.2% in specific categories. The robustness of Crome is further testified by the consistent gains obtained in a Best-of-N inference setting across increasing N, across various benchmarks, including the popular RewardBench (covering chat, chat-hard, safety, and reasoning tasks), the safety-focused WildGuardTest, and the reasoning-specific GSM8k.

  • 12 authors
·
Jun 19 3

Guiding Giants: Lightweight Controllers for Weighted Activation Steering in LLMs

Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.

  • 3 authors
·
May 21

Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap

Learning the response of single-cells to various treatments offers great potential to enable targeted therapies. In this context, neural optimal transport (OT) has emerged as a principled methodological framework because it inherently accommodates the challenges of unpaired data induced by cell destruction during data acquisition. However, most existing OT approaches are incapable of conditioning on different treatment contexts (e.g., time, drug treatment, drug dosage, or cell type) and we still lack methods that unanimously show promising generalization performance to unseen treatments. Here, we propose the Conditional Monge Gap which learns OT maps conditionally on arbitrary covariates. We demonstrate its value in predicting single-cell perturbation responses conditional to one or multiple drugs, a drug dosage, or combinations thereof. We find that our conditional models achieve results comparable and sometimes even superior to the condition-specific state-of-the-art on scRNA-seq as well as multiplexed protein imaging data. Notably, by aggregating data across conditions we perform cross-task learning which unlocks remarkable generalization abilities to unseen drugs or drug dosages, widely outperforming other conditional models in capturing heterogeneity (i.e., higher moments) in the perturbed population. Finally, by scaling to hundreds of conditions and testing on unseen drugs, we narrow the gap between structure-based and effect-based drug representations, suggesting a promising path to the successful prediction of perturbation effects for unseen treatments.

  • 4 authors
·
Apr 11

Curiosity-driven Red-teaming for Large Language Models

Large language models (LLMs) hold great potential for many natural language applications but risk generating incorrect or toxic content. To probe when an LLM generates unwanted content, the current paradigm is to recruit a red team of human testers to design input prompts (i.e., test cases) that elicit undesirable responses from LLMs. However, relying solely on human testers is expensive and time-consuming. Recent works automate red teaming by training a separate red team LLM with reinforcement learning (RL) to generate test cases that maximize the chance of eliciting undesirable responses from the target LLM. However, current RL methods are only able to generate a small number of effective test cases resulting in a low coverage of the span of prompts that elicit undesirable responses from the target LLM. To overcome this limitation, we draw a connection between the problem of increasing the coverage of generated test cases and the well-studied approach of curiosity-driven exploration that optimizes for novelty. Our method of curiosity-driven red teaming (CRT) achieves greater coverage of test cases while mantaining or increasing their effectiveness compared to existing methods. Our method, CRT successfully provokes toxic responses from LLaMA2 model that has been heavily fine-tuned using human preferences to avoid toxic outputs. Code is available at https://github.com/Improbable-AI/curiosity_redteam

  • 8 authors
·
Feb 29, 2024

Circuit Component Reuse Across Tasks in Transformer Language Models

Recent work in mechanistic interpretability has shown that behaviors in language models can be successfully reverse-engineered through circuit analysis. A common criticism, however, is that each circuit is task-specific, and thus such analysis cannot contribute to understanding the models at a higher level. In this work, we present evidence that insights (both low-level findings about specific heads and higher-level findings about general algorithms) can indeed generalize across tasks. Specifically, we study the circuit discovered in Wang et al. (2022) for the Indirect Object Identification (IOI) task and 1.) show that it reproduces on a larger GPT2 model, and 2.) that it is mostly reused to solve a seemingly different task: Colored Objects (Ippolito & Callison-Burch, 2023). We provide evidence that the process underlying both tasks is functionally very similar, and contains about a 78% overlap in in-circuit attention heads. We further present a proof-of-concept intervention experiment, in which we adjust four attention heads in middle layers in order to 'repair' the Colored Objects circuit and make it behave like the IOI circuit. In doing so, we boost accuracy from 49.6% to 93.7% on the Colored Objects task and explain most sources of error. The intervention affects downstream attention heads in specific ways predicted by their interactions in the IOI circuit, indicating that this subcircuit behavior is invariant to the different task inputs. Overall, our results provide evidence that it may yet be possible to explain large language models' behavior in terms of a relatively small number of interpretable task-general algorithmic building blocks and computational components.

  • 3 authors
·
Oct 12, 2023

Leveraging Side Information for Ligand Conformation Generation using Diffusion-Based Approaches

Ligand molecule conformation generation is a critical challenge in drug discovery. Deep learning models have been developed to tackle this problem, particularly through the use of generative models in recent years. However, these models often generate conformations that lack meaningful structure and randomness due to the absence of essential side information. Examples of such side information include the chemical and geometric features of the target protein, ligand-target compound interactions, and ligand chemical properties. Without these constraints, the generated conformations may not be suitable for further selection and design of new drugs. To address this limitation, we propose a novel method for generating ligand conformations that leverage side information and incorporate flexible constraints into standard diffusion models. Drawing inspiration from the concept of message passing, we introduce ligand-target massage passing block, a mechanism that facilitates the exchange of information between target nodes and ligand nodes, thereby incorporating target node features. To capture non-covalent interactions, we introduce ligand-target compound inter and intra edges. To further improve the biological relevance of the generated conformations, we train energy models using scalar chemical features. These models guide the progress of the standard Denoising Diffusion Probabilistic Models, resulting in more biologically meaningful conformations. We evaluate the performance of SIDEGEN using the PDBBind-2020 dataset, comparing it against other methods. The results demonstrate improvements in both Aligned RMSD and Ligand RMSD evaluations. Specifically, our model outperforms GeoDiff (trained on PDBBind-2020) by 20% in terms of the median aligned RMSD metric.

  • 3 authors
·
Aug 2, 2023

Look Once to Hear: Target Speech Hearing with Noisy Examples

In crowded settings, the human brain can focus on speech from a target speaker, given prior knowledge of how they sound. We introduce a novel intelligent hearable system that achieves this capability, enabling target speech hearing to ignore all interfering speech and noise, but the target speaker. A naive approach is to require a clean speech example to enroll the target speaker. This is however not well aligned with the hearable application domain since obtaining a clean example is challenging in real world scenarios, creating a unique user interface problem. We present the first enrollment interface where the wearer looks at the target speaker for a few seconds to capture a single, short, highly noisy, binaural example of the target speaker. This noisy example is used for enrollment and subsequent speech extraction in the presence of interfering speakers and noise. Our system achieves a signal quality improvement of 7.01 dB using less than 5 seconds of noisy enrollment audio and can process 8 ms of audio chunks in 6.24 ms on an embedded CPU. Our user studies demonstrate generalization to real-world static and mobile speakers in previously unseen indoor and outdoor multipath environments. Finally, our enrollment interface for noisy examples does not cause performance degradation compared to clean examples, while being convenient and user-friendly. Taking a step back, this paper takes an important step towards enhancing the human auditory perception with artificial intelligence. We provide code and data at: https://github.com/vb000/LookOnceToHear.

  • 5 authors
·
May 10, 2024