new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 13

Semantic-preserved Communication System for Highly Efficient Speech Transmission

Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In contrast to traditional wireless communication methods that focus on the transmission of abstract symbols, semantic communication approaches attempt to achieve better transmission efficiency by only sending the semantic-related information of the source data. In this paper, we consider semantic-oriented speech transmission which transmits only the semantic-relevant information over the channel for the speech recognition task, and a compact additional set of semantic-irrelevant information for the speech reconstruction task. We propose a novel end-to-end DL-based transceiver which extracts and encodes the semantic information from the input speech spectrums at the transmitter and outputs the corresponding transcriptions from the decoded semantic information at the receiver. For the speech to speech transmission, we further include a CTC alignment module that extracts a small number of additional semantic-irrelevant but speech-related information for the better reconstruction of the original speech signals at the receiver. The simulation results confirm that our proposed method outperforms current methods in terms of the accuracy of the predicted text for the speech to text transmission and the quality of the recovered speech signals for the speech to speech transmission, and significantly improves transmission efficiency. More specifically, the proposed method only sends 16% of the amount of the transmitted symbols required by the existing methods while achieving about 10% reduction in WER for the speech to text transmission. For the speech to speech transmission, it results in an even more remarkable improvement in terms of transmission efficiency with only 0.2% of the amount of the transmitted symbols required by the existing method.

  • 5 authors
·
May 25, 2022

PromptTTS 2: Describing and Generating Voices with Text Prompt

Speech conveys more information than just text, as the same word can be uttered in various voices to convey diverse information. Compared to traditional text-to-speech (TTS) methods relying on speech prompts (reference speech) for voice variability, using text prompts (descriptions) is more user-friendly since speech prompts can be hard to find or may not exist at all. TTS approaches based on the text prompt face two challenges: 1) the one-to-many problem, where not all details about voice variability can be described in the text prompt, and 2) the limited availability of text prompt datasets, where vendors and large cost of data labeling are required to write text prompt for speech. In this work, we introduce PromptTTS 2 to address these challenges with a variation network to provide variability information of voice not captured by text prompts, and a prompt generation pipeline to utilize the large language models (LLM) to compose high quality text prompts. Specifically, the variation network predicts the representation extracted from the reference speech (which contains full information about voice) based on the text prompt representation. For the prompt generation pipeline, it generates text prompts for speech with a speech understanding model to recognize voice attributes (e.g., gender, speed) from speech and a large language model to formulate text prompt based on the recognition results. Experiments on a large-scale (44K hours) speech dataset demonstrate that compared to the previous works, PromptTTS 2 generates voices more consistent with text prompts and supports the sampling of diverse voice variability, thereby offering users more choices on voice generation. Additionally, the prompt generation pipeline produces high-quality prompts, eliminating the large labeling cost. The demo page of PromptTTS 2 is available onlinehttps://speechresearch.github.io/prompttts2.

  • 15 authors
·
Sep 5, 2023 2

High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models

Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website.

  • 7 authors
·
Sep 27, 2023

SenSE: Semantic-Aware High-Fidelity Universal Speech Enhancement

Generative universal speech enhancement (USE) methods aim to leverage generative models to improve speech quality under various types of distortions. Diffusion- or flow-based generative models are capable of producing enhanced speech with high quality and fidelity. However, they typically achieve speech enhancement by learning an acoustic feature mapping from degraded speech to clean speech, while lacking awareness of high-level semantic information. This deficiency tends to cause semantic ambiguity and acoustic discontinuities in the enhanced speech. In contrast, humans can often comprehend heavily corrupted speech by relying on semantic priors, suggesting that semantics play a crucial role in speech enhancement. Therefore, in this paper, we propose SenSE, which leverages a language model to capture the semantic information of distorted speech and effectively integrates it into a flow-matching-based speech enhancement framework. Specifically, we introduce a semantic-aware speech language model to capture the semantics of degraded speech and generate semantic tokens. We then design a semantic guidance mechanism that incorporates semantic information into the flow-matching-based speech enhancement process, effectively mitigating semantic ambiguity. In addition, we propose a prompt guidance mechanism, which leverages a short reference utterance to alleviate the loss of speaker similarity under severe distortion conditions. The results of several benchmark data sets demonstrate that SenSE not only ensures high perceptual quality but also substantially improves speech fidelity while maintaining strong robustness under severe distortions. Codes and demos are available.

  • 6 authors
·
Sep 29

MobileSpeech: A Fast and High-Fidelity Framework for Mobile Zero-Shot Text-to-Speech

Zero-shot text-to-speech (TTS) has gained significant attention due to its powerful voice cloning capabilities, requiring only a few seconds of unseen speaker voice prompts. However, all previous work has been developed for cloud-based systems. Taking autoregressive models as an example, although these approaches achieve high-fidelity voice cloning, they fall short in terms of inference speed, model size, and robustness. Therefore, we propose MobileSpeech, which is a fast, lightweight, and robust zero-shot text-to-speech system based on mobile devices for the first time. Specifically: 1) leveraging discrete codec, we design a parallel speech mask decoder module called SMD, which incorporates hierarchical information from the speech codec and weight mechanisms across different codec layers during the generation process. Moreover, to bridge the gap between text and speech, we introduce a high-level probabilistic mask that simulates the progression of information flow from less to more during speech generation. 2) For speaker prompts, we extract fine-grained prompt duration from the prompt speech and incorporate text, prompt speech by cross attention in SMD. We demonstrate the effectiveness of MobileSpeech on multilingual datasets at different levels, achieving state-of-the-art results in terms of generating speed and speech quality. MobileSpeech achieves RTF of 0.09 on a single A100 GPU and we have successfully deployed MobileSpeech on mobile devices. Audio samples are available at https://mobilespeech.github.io/ .

  • 5 authors
·
Feb 14, 2024

CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models

Recent work has studied text-to-audio synthesis using large amounts of paired text-audio data. However, audio recordings with high-quality text annotations can be difficult to acquire. In this work, we approach text-to-audio synthesis using unlabeled videos and pretrained language-vision models. We propose to learn the desired text-audio correspondence by leveraging the visual modality as a bridge. We train a conditional diffusion model to generate the audio track of a video, given a video frame encoded by a pretrained contrastive language-image pretraining (CLIP) model. At test time, we first explore performing a zero-shot modality transfer and condition the diffusion model with a CLIP-encoded text query. However, we observe a noticeable performance drop with respect to image queries. To close this gap, we further adopt a pretrained diffusion prior model to generate a CLIP image embedding given a CLIP text embedding. Our results show the effectiveness of the proposed method, and that the pretrained diffusion prior can reduce the modality transfer gap. While we focus on text-to-audio synthesis, the proposed model can also generate audio from image queries, and it shows competitive performance against a state-of-the-art image-to-audio synthesis model in a subjective listening test. This study offers a new direction of approaching text-to-audio synthesis that leverages the naturally-occurring audio-visual correspondence in videos and the power of pretrained language-vision models.

  • 8 authors
·
Jun 16, 2023

StreamUni: Achieving Streaming Speech Translation with a Unified Large Speech-Language Model

Streaming speech translation (StreamST) requires determining appropriate timing, known as policy, to generate translations while continuously receiving source speech inputs, balancing low latency with high translation quality. However, existing StreamST methods typically operate on sentence-level speech segments, referred to as simultaneous speech translation (SimulST). In practice, they require collaboration with segmentation models to accomplish StreamST, where the truncated speech segments constrain SimulST models to make policy decisions and generate translations based on limited contextual information. Moreover, SimulST models struggle to learn effective policies due to the complexity of speech inputs and cross-lingual generation. To address these challenges, we propose StreamUni, which achieves StreamST through a unified Large Speech-Language Model (LSLM). Specifically, StreamUni incorporates speech Chain-of-Thought (CoT) in guiding the LSLM to generate multi-stage outputs. Leveraging these multi-stage outputs, StreamUni simultaneously accomplishes speech segmentation, policy decision, and translation generation, completing StreamST without requiring massive policy-specific training. Additionally, we propose a streaming CoT training method that enhances low-latency policy decisions and generation capabilities using limited CoT data. Experiments demonstrate that our approach achieves state-of-the-art performance on StreamST tasks.

  • 6 authors
·
Jul 10

WavChat: A Survey of Spoken Dialogue Models

Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.

  • 19 authors
·
Nov 14, 2024

LipVoicer: Generating Speech from Silent Videos Guided by Lip Reading

Lip-to-speech involves generating a natural-sounding speech synchronized with a soundless video of a person talking. Despite recent advances, current methods still cannot produce high-quality speech with high levels of intelligibility for challenging and realistic datasets such as LRS3. In this work, we present LipVoicer, a novel method that generates high-quality speech, even for in-the-wild and rich datasets, by incorporating the text modality. Given a silent video, we first predict the spoken text using a pre-trained lip-reading network. We then condition a diffusion model on the video and use the extracted text through a classifier-guidance mechanism where a pre-trained ASR serves as the classifier. LipVoicer outperforms multiple lip-to-speech baselines on LRS2 and LRS3, which are in-the-wild datasets with hundreds of unique speakers in their test set and an unrestricted vocabulary. Moreover, our experiments show that the inclusion of the text modality plays a major role in the intelligibility of the produced speech, readily perceptible while listening, and is empirically reflected in the substantial reduction of the WER metric. We demonstrate the effectiveness of LipVoicer through human evaluation, which shows that it produces more natural and synchronized speech signals compared to competing methods. Finally, we created a demo showcasing LipVoicer's superiority in producing natural, synchronized, and intelligible speech, providing additional evidence of its effectiveness. Project page and code: https://github.com/yochaiye/LipVoicer

  • 5 authors
·
Jun 5, 2023

WESPER: Zero-shot and Realtime Whisper to Normal Voice Conversion for Whisper-based Speech Interactions

Recognizing whispered speech and converting it to normal speech creates many possibilities for speech interaction. Because the sound pressure of whispered speech is significantly lower than that of normal speech, it can be used as a semi-silent speech interaction in public places without being audible to others. Converting whispers to normal speech also improves the speech quality for people with speech or hearing impairments. However, conventional speech conversion techniques do not provide sufficient conversion quality or require speaker-dependent datasets consisting of pairs of whispered and normal speech utterances. To address these problems, we propose WESPER, a zero-shot, real-time whisper-to-normal speech conversion mechanism based on self-supervised learning. WESPER consists of a speech-to-unit (STU) encoder, which generates hidden speech units common to both whispered and normal speech, and a unit-to-speech (UTS) decoder, which reconstructs speech from the encoded speech units. Unlike the existing methods, this conversion is user-independent and does not require a paired dataset for whispered and normal speech. The UTS decoder can reconstruct speech in any target speaker's voice from speech units, and it requires only an unlabeled target speaker's speech data. We confirmed that the quality of the speech converted from a whisper was improved while preserving its natural prosody. Additionally, we confirmed the effectiveness of the proposed approach to perform speech reconstruction for people with speech or hearing disabilities. (project page: http://lab.rekimoto.org/projects/wesper )

  • 1 authors
·
Mar 2, 2023

Seamless: Multilingual Expressive and Streaming Speech Translation

Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at https://github.com/facebookresearch/seamless_communication

  • 65 authors
·
Dec 8, 2023 3

MixSpeech: Cross-Modality Self-Learning with Audio-Visual Stream Mixup for Visual Speech Translation and Recognition

Multi-media communications facilitate global interaction among people. However, despite researchers exploring cross-lingual translation techniques such as machine translation and audio speech translation to overcome language barriers, there is still a shortage of cross-lingual studies on visual speech. This lack of research is mainly due to the absence of datasets containing visual speech and translated text pairs. In this paper, we present AVMuST-TED, the first dataset for Audio-Visual Multilingual Speech Translation, derived from TED talks. Nonetheless, visual speech is not as distinguishable as audio speech, making it difficult to develop a mapping from source speech phonemes to the target language text. To address this issue, we propose MixSpeech, a cross-modality self-learning framework that utilizes audio speech to regularize the training of visual speech tasks. To further minimize the cross-modality gap and its impact on knowledge transfer, we suggest adopting mixed speech, which is created by interpolating audio and visual streams, along with a curriculum learning strategy to adjust the mixing ratio as needed. MixSpeech enhances speech translation in noisy environments, improving BLEU scores for four languages on AVMuST-TED by +1.4 to +4.2. Moreover, it achieves state-of-the-art performance in lip reading on CMLR (11.1\%), LRS2 (25.5\%), and LRS3 (28.0\%).

  • 10 authors
·
Mar 9, 2023

Vec-Tok Speech: speech vectorization and tokenization for neural speech generation

Language models (LMs) have recently flourished in natural language processing and computer vision, generating high-fidelity texts or images in various tasks. In contrast, the current speech generative models are still struggling regarding speech quality and task generalization. This paper presents Vec-Tok Speech, an extensible framework that resembles multiple speech generation tasks, generating expressive and high-fidelity speech. Specifically, we propose a novel speech codec based on speech vectors and semantic tokens. Speech vectors contain acoustic details contributing to high-fidelity speech reconstruction, while semantic tokens focus on the linguistic content of speech, facilitating language modeling. Based on the proposed speech codec, Vec-Tok Speech leverages an LM to undertake the core of speech generation. Moreover, Byte-Pair Encoding (BPE) is introduced to reduce the token length and bit rate for lower exposure bias and longer context coverage, improving the performance of LMs. Vec-Tok Speech can be used for intra- and cross-lingual zero-shot voice conversion (VC), zero-shot speaking style transfer text-to-speech (TTS), speech-to-speech translation (S2ST), speech denoising, and speaker de-identification and anonymization. Experiments show that Vec-Tok Speech, built on 50k hours of speech, performs better than other SOTA models. Code will be available at https://github.com/BakerBunker/VecTok .

  • 8 authors
·
Oct 11, 2023

Quantize More, Lose Less: Autoregressive Generation from Residually Quantized Speech Representations

Text-to-speech (TTS) synthesis has seen renewed progress under the discrete modeling paradigm. Existing autoregressive approaches often rely on single-codebook representations, which suffer from significant information loss. Even with post-hoc refinement techniques such as flow matching, these methods fail to recover fine-grained details (e.g., prosodic nuances, speaker-specific timbres), especially in challenging scenarios like singing voice or music synthesis. We propose QTTS, a novel TTS framework built upon our new audio codec, QDAC. The core innovation of QDAC lies in its end-to-end training of an ASR-based auto-regressive network with a GAN, which achieves superior semantic feature disentanglement for scalable, near-lossless compression. QTTS models these discrete codes using two innovative strategies: the Hierarchical Parallel architecture, which uses a dual-AR structure to model inter-codebook dependencies for higher-quality synthesis, and the Delay Multihead approach, which employs parallelized prediction with a fixed delay to accelerate inference speed. Our experiments demonstrate that the proposed framework achieves higher synthesis quality and better preserves expressive content compared to baseline. This suggests that scaling up compression via multi-codebook modeling is a promising direction for high-fidelity, general-purpose speech and audio generation.

  • 28 authors
·
Jul 16

SecoustiCodec: Cross-Modal Aligned Streaming Single-Codecbook Speech Codec

Speech codecs serve as a crucial bridge in unifying speech and text language models. Existing codec methods face several challenges in semantic encoding, such as residual paralinguistic information (e.g., timbre, emotion), insufficient semantic completeness, limited reconstruction capability, and lack of support for streaming. To address these challenges, we propose SecoustiCodec, a cross-modal aligned low-bitrate streaming speech codec that disentangles semantic and paralinguistic information in a single-codebook space. To ensure semantic completeness and reconstruction fidelity, paralinguistic encoding is introduced to bridge the information gap between semantic and acoustic encoding. A semantic-only efficient quantization method based on VAE (Variational Autoencoder) and FSQ (Finite Scalar Quantization) is proposed. This approach alleviates the long-tail distribution problem of tokens while maintaining high codebook utilization. A semantic disentanglement method based on contrastive learning is proposed, which aligns text and speech in a joint multimodal frame-level space, effectively removing paralinguistic information from semantic encoding. An acoustic-constrained multi-stage optimization strategy is proposed to ensure robust and stable convergence. Figure~fig:pesq_kbps_below_2kbps shows SecoustiCodec achieves SOTA (state-of-the-art) reconstruction quality (PESQ) of 1.77/2.58 at 0.27/1 kbps. The code and model weights for SecoustiCodec will be open-sourced upon the completion of the peer-review process. We've open-sourced SecoustiCodec's demo, code, and model weights.

  • 13 authors
·
Aug 4

MM-TTS: Multi-modal Prompt based Style Transfer for Expressive Text-to-Speech Synthesis

The style transfer task in Text-to-Speech refers to the process of transferring style information into text content to generate corresponding speech with a specific style. However, most existing style transfer approaches are either based on fixed emotional labels or reference speech clips, which cannot achieve flexible style transfer. Recently, some methods have adopted text descriptions to guide style transfer. In this paper, we propose a more flexible multi-modal and style controllable TTS framework named MM-TTS. It can utilize any modality as the prompt in unified multi-modal prompt space, including reference speech, emotional facial images, and text descriptions, to control the style of the generated speech in a system. The challenges of modeling such a multi-modal style controllable TTS mainly lie in two aspects:1)aligning the multi-modal information into a unified style space to enable the input of arbitrary modality as the style prompt in a single system, and 2)efficiently transferring the unified style representation into the given text content, thereby empowering the ability to generate prompt style-related voice. To address these problems, we propose an aligned multi-modal prompt encoder that embeds different modalities into a unified style space, supporting style transfer for different modalities. Additionally, we present a new adaptive style transfer method named Style Adaptive Convolutions to achieve a better style representation. Furthermore, we design a Rectified Flow based Refiner to solve the problem of over-smoothing Mel-spectrogram and generate audio of higher fidelity. Since there is no public dataset for multi-modal TTS, we construct a dataset named MEAD-TTS, which is related to the field of expressive talking head. Our experiments on the MEAD-TTS dataset and out-of-domain datasets demonstrate that MM-TTS can achieve satisfactory results based on multi-modal prompts.

  • 9 authors
·
Dec 17, 2023

ZMM-TTS: Zero-shot Multilingual and Multispeaker Speech Synthesis Conditioned on Self-supervised Discrete Speech Representations

Neural text-to-speech (TTS) has achieved human-like synthetic speech for single-speaker, single-language synthesis. Multilingual TTS systems are limited to resource-rich languages due to the lack of large paired text and studio-quality audio data. In most cases, TTS systems are built using a single speaker's voice. However, there is growing interest in developing systems that can synthesize voices for new speakers using only a few seconds of their speech. This paper presents ZMM-TTS, a multilingual and multispeaker framework utilizing quantized latent speech representations from a large-scale, pre-trained, self-supervised model. Our paper is the first to incorporate the representations from text-based and speech-based self-supervised learning models into multilingual speech synthesis tasks. We conducted comprehensive subjective and objective evaluations through a series of experiments. Our model has been proven effective in terms of speech naturalness and similarity for both seen and unseen speakers in six high-resource languages. We also tested the efficiency of our method on two hypothetical low-resource languages. The results are promising, indicating that our proposed approach can synthesize audio that is intelligible and has a high degree of similarity to the target speaker's voice, even without any training data for the new, unseen language.

  • 8 authors
·
Dec 21, 2023

StyleTTS-ZS: Efficient High-Quality Zero-Shot Text-to-Speech Synthesis with Distilled Time-Varying Style Diffusion

The rapid development of large-scale text-to-speech (TTS) models has led to significant advancements in modeling diverse speaker prosody and voices. However, these models often face issues such as slow inference speeds, reliance on complex pre-trained neural codec representations, and difficulties in achieving naturalness and high similarity to reference speakers. To address these challenges, this work introduces StyleTTS-ZS, an efficient zero-shot TTS model that leverages distilled time-varying style diffusion to capture diverse speaker identities and prosodies. We propose a novel approach that represents human speech using input text and fixed-length time-varying discrete style codes to capture diverse prosodic variations, trained adversarially with multi-modal discriminators. A diffusion model is then built to sample this time-varying style code for efficient latent diffusion. Using classifier-free guidance, StyleTTS-ZS achieves high similarity to the reference speaker in the style diffusion process. Furthermore, to expedite sampling, the style diffusion model is distilled with perceptual loss using only 10k samples, maintaining speech quality and similarity while reducing inference speed by 90%. Our model surpasses previous state-of-the-art large-scale zero-shot TTS models in both naturalness and similarity, offering a 10-20 faster sampling speed, making it an attractive alternative for efficient large-scale zero-shot TTS systems. The audio demo, code and models are available at https://styletts-zs.github.io/.

  • 4 authors
·
Sep 16, 2024 1

CosyVoice 2: Scalable Streaming Speech Synthesis with Large Language Models

In our previous work, we introduced CosyVoice, a multilingual speech synthesis model based on supervised discrete speech tokens. By employing progressive semantic decoding with two popular generative models, language models (LMs) and Flow Matching, CosyVoice demonstrated high prosody naturalness, content consistency, and speaker similarity in speech in-context learning. Recently, significant progress has been made in multi-modal large language models (LLMs), where the response latency and real-time factor of speech synthesis play a crucial role in the interactive experience. Therefore, in this report, we present an improved streaming speech synthesis model, CosyVoice 2, which incorporates comprehensive and systematic optimizations. Specifically, we introduce finite-scalar quantization to improve the codebook utilization of speech tokens. For the text-speech LM, we streamline the model architecture to allow direct use of a pre-trained LLM as the backbone. In addition, we develop a chunk-aware causal flow matching model to support various synthesis scenarios, enabling both streaming and non-streaming synthesis within a single model. By training on a large-scale multilingual dataset, CosyVoice 2 achieves human-parity naturalness, minimal response latency, and virtually lossless synthesis quality in the streaming mode. We invite readers to listen to the demos at https://funaudiollm.github.io/cosyvoice2.

  • 19 authors
·
Dec 13, 2024 1

Stream RAG: Instant and Accurate Spoken Dialogue Systems with Streaming Tool Usage

End-to-end speech-in speech-out dialogue systems are emerging as a powerful alternative to traditional ASR-LLM-TTS pipelines, generating more natural, expressive responses with significantly lower latency. However, these systems remain prone to hallucinations due to limited factual grounding. While text-based dialogue systems address this challenge by integrating tools such as web search and knowledge graph APIs, we introduce the first approach to extend tool use directly into speech-in speech-out systems. A key challenge is that tool integration substantially increases response latency, disrupting conversational flow. To mitigate this, we propose Streaming Retrieval-Augmented Generation (Streaming RAG), a novel framework that reduces user-perceived latency by predicting tool queries in parallel with user speech, even before the user finishes speaking. Specifically, we develop a post-training pipeline that teaches the model when to issue tool calls during ongoing speech and how to generate spoken summaries that fuse audio queries with retrieved text results, thereby improving both accuracy and responsiveness. To evaluate our approach, we construct AudioCRAG, a benchmark created by converting queries from the publicly available CRAG dataset into speech form. Experimental results demonstrate that our streaming RAG approach increases QA accuracy by up to 200% relative (from 11.1% to 34.2% absolute) and further enhances user experience by reducing tool use latency by 20%. Importantly, our streaming RAG approach is modality-agnostic and can be applied equally to typed input, paving the way for more agentic, real-time AI assistants.

  • 17 authors
·
Oct 2

Language-Codec: Reducing the Gaps Between Discrete Codec Representation and Speech Language Models

In recent years, large language models have achieved significant success in generative tasks (e.g., speech cloning and audio generation) related to speech, audio, music, and other signal domains. A crucial element of these models is the discrete acoustic codecs, which serves as an intermediate representation replacing the mel-spectrogram. However, there exist several gaps between discrete codecs and downstream speech language models. Specifically, 1) most codec models are trained on only 1,000 hours of data, whereas most speech language models are trained on 60,000 hours; 2) Achieving good reconstruction performance requires the utilization of numerous codebooks, which increases the burden on downstream speech language models; 3) The initial channel of the codebooks contains excessive information, making it challenging to directly generate acoustic tokens from weakly supervised signals such as text in downstream tasks. Consequently, leveraging the characteristics of speech language models, we propose Language-Codec. In the Language-Codec, we introduce a Mask Channel Residual Vector Quantization (MCRVQ) mechanism along with improved Fourier transform structures and larger training datasets to address the aforementioned gaps. We compare our method with competing audio compression algorithms and observe significant outperformance across extensive evaluations. Furthermore, we also validate the efficiency of the Language-Codec on downstream speech language models. The source code and pre-trained models can be accessed at https://github.com/jishengpeng/languagecodec .

  • 7 authors
·
Feb 19, 2024

A Text-to-Speech Pipeline, Evaluation Methodology, and Initial Fine-Tuning Results for Child Speech Synthesis

Speech synthesis has come a long way as current text-to-speech (TTS) models can now generate natural human-sounding speech. However, most of the TTS research focuses on using adult speech data and there has been very limited work done on child speech synthesis. This study developed and validated a training pipeline for fine-tuning state-of-the-art (SOTA) neural TTS models using child speech datasets. This approach adopts a multi-speaker TTS retuning workflow to provide a transfer-learning pipeline. A publicly available child speech dataset was cleaned to provide a smaller subset of approximately 19 hours, which formed the basis of our fine-tuning experiments. Both subjective and objective evaluations were performed using a pretrained MOSNet for objective evaluation and a novel subjective framework for mean opinion score (MOS) evaluations. Subjective evaluations achieved the MOS of 3.95 for speech intelligibility, 3.89 for voice naturalness, and 3.96 for voice consistency. Objective evaluation using a pretrained MOSNet showed a strong correlation between real and synthetic child voices. Speaker similarity was also verified by calculating the cosine similarity between the embeddings of utterances. An automatic speech recognition (ASR) model is also used to provide a word error rate (WER) comparison between the real and synthetic child voices. The final trained TTS model was able to synthesize child-like speech from reference audio samples as short as 5 seconds.

  • 5 authors
·
Mar 22, 2022

Moshi: a speech-text foundation model for real-time dialogue

We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning -- such as emotion or non-speech sounds -- is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this "Inner Monologue" method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at https://github.com/kyutai-labs/moshi.

  • 8 authors
·
Sep 17, 2024

Affective social anthropomorphic intelligent system

Human conversational styles are measured by the sense of humor, personality, and tone of voice. These characteristics have become essential for conversational intelligent virtual assistants. However, most of the state-of-the-art intelligent virtual assistants (IVAs) are failed to interpret the affective semantics of human voices. This research proposes an anthropomorphic intelligent system that can hold a proper human-like conversation with emotion and personality. A voice style transfer method is also proposed to map the attributes of a specific emotion. Initially, the frequency domain data (Mel-Spectrogram) is created by converting the temporal audio wave data, which comprises discrete patterns for audio features such as notes, pitch, rhythm, and melody. A collateral CNN-Transformer-Encoder is used to predict seven different affective states from voice. The voice is also fed parallelly to the deep-speech, an RNN model that generates the text transcription from the spectrogram. Then the transcripted text is transferred to the multi-domain conversation agent using blended skill talk, transformer-based retrieve-and-generate generation strategy, and beam-search decoding, and an appropriate textual response is generated. The system learns an invertible mapping of data to a latent space that can be manipulated and generates a Mel-spectrogram frame based on previous Mel-spectrogram frames to voice synthesize and style transfer. Finally, the waveform is generated using WaveGlow from the spectrogram. The outcomes of the studies we conducted on individual models were auspicious. Furthermore, users who interacted with the system provided positive feedback, demonstrating the system's effectiveness.

  • 5 authors
·
Apr 19, 2023

LatentSpeech: Latent Diffusion for Text-To-Speech Generation

Diffusion-based Generative AI gains significant attention for its superior performance over other generative techniques like Generative Adversarial Networks and Variational Autoencoders. While it has achieved notable advancements in fields such as computer vision and natural language processing, their application in speech generation remains under-explored. Mainstream Text-to-Speech systems primarily map outputs to Mel-Spectrograms in the spectral space, leading to high computational loads due to the sparsity of MelSpecs. To address these limitations, we propose LatentSpeech, a novel TTS generation approach utilizing latent diffusion models. By using latent embeddings as the intermediate representation, LatentSpeech reduces the target dimension to 5% of what is required for MelSpecs, simplifying the processing for the TTS encoder and vocoder and enabling efficient high-quality speech generation. This study marks the first integration of latent diffusion models in TTS, enhancing the accuracy and naturalness of generated speech. Experimental results on benchmark datasets demonstrate that LatentSpeech achieves a 25% improvement in Word Error Rate and a 24% improvement in Mel Cepstral Distortion compared to existing models, with further improvements rising to 49.5% and 26%, respectively, with additional training data. These findings highlight the potential of LatentSpeech to advance the state-of-the-art in TTS technology

  • 5 authors
·
Dec 11, 2024

DASpeech: Directed Acyclic Transformer for Fast and High-quality Speech-to-Speech Translation

Direct speech-to-speech translation (S2ST) translates speech from one language into another using a single model. However, due to the presence of linguistic and acoustic diversity, the target speech follows a complex multimodal distribution, posing challenges to achieving both high-quality translations and fast decoding speeds for S2ST models. In this paper, we propose DASpeech, a non-autoregressive direct S2ST model which realizes both fast and high-quality S2ST. To better capture the complex distribution of the target speech, DASpeech adopts the two-pass architecture to decompose the generation process into two steps, where a linguistic decoder first generates the target text, and an acoustic decoder then generates the target speech based on the hidden states of the linguistic decoder. Specifically, we use the decoder of DA-Transformer as the linguistic decoder, and use FastSpeech 2 as the acoustic decoder. DA-Transformer models translations with a directed acyclic graph (DAG). To consider all potential paths in the DAG during training, we calculate the expected hidden states for each target token via dynamic programming, and feed them into the acoustic decoder to predict the target mel-spectrogram. During inference, we select the most probable path and take hidden states on that path as input to the acoustic decoder. Experiments on the CVSS Fr-En benchmark demonstrate that DASpeech can achieve comparable or even better performance than the state-of-the-art S2ST model Translatotron 2, while preserving up to 18.53x speedup compared to the autoregressive baseline. Compared with the previous non-autoregressive S2ST model, DASpeech does not rely on knowledge distillation and iterative decoding, achieving significant improvements in both translation quality and decoding speed. Furthermore, DASpeech shows the ability to preserve the speaker's voice of the source speech during translation.

  • 3 authors
·
Oct 11, 2023

OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation

Full-duplex spoken dialogue systems significantly advance over traditional turn-based dialogue systems, as they allow simultaneous bidirectional communication, closely mirroring human-human interactions. However, achieving low latency and natural interactions in full-duplex dialogue systems remains a significant challenge, especially considering human conversation dynamics such as interruptions, backchannels, and overlapping speech. In this paper, we introduce a novel End-to-End GPT-based model OmniFlatten for full-duplex conversation, capable of effectively modeling the complex behaviors inherent to natural conversations with low latency. To achieve full-duplex communication capabilities, we propose a multi-stage post-training scheme that progressively adapts a text-based large language model (LLM) backbone into a speech-text dialogue LLM, capable of generating text and speech in real time, without modifying the architecture of the backbone LLM. The training process comprises three stages: modality alignment, half-duplex dialogue learning, and full-duplex dialogue learning. Throughout all training stages, we standardize the data using a flattening operation, which allows us to unify the training methods and the model architecture across different modalities and tasks. Our approach offers a straightforward modeling technique and a promising research direction for developing efficient and natural end-to-end full-duplex spoken dialogue systems. Audio samples of dialogues generated by OmniFlatten can be found at this web site (https://omniflatten.github.io/).

  • 9 authors
·
Oct 23, 2024 1

Pheme: Efficient and Conversational Speech Generation

In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online.

  • 4 authors
·
Jan 5, 2024 2

USAT: A Universal Speaker-Adaptive Text-to-Speech Approach

Conventional text-to-speech (TTS) research has predominantly focused on enhancing the quality of synthesized speech for speakers in the training dataset. The challenge of synthesizing lifelike speech for unseen, out-of-dataset speakers, especially those with limited reference data, remains a significant and unresolved problem. While zero-shot or few-shot speaker-adaptive TTS approaches have been explored, they have many limitations. Zero-shot approaches tend to suffer from insufficient generalization performance to reproduce the voice of speakers with heavy accents. While few-shot methods can reproduce highly varying accents, they bring a significant storage burden and the risk of overfitting and catastrophic forgetting. In addition, prior approaches only provide either zero-shot or few-shot adaptation, constraining their utility across varied real-world scenarios with different demands. Besides, most current evaluations of speaker-adaptive TTS are conducted only on datasets of native speakers, inadvertently neglecting a vast portion of non-native speakers with diverse accents. Our proposed framework unifies both zero-shot and few-shot speaker adaptation strategies, which we term as "instant" and "fine-grained" adaptations based on their merits. To alleviate the insufficient generalization performance observed in zero-shot speaker adaptation, we designed two innovative discriminators and introduced a memory mechanism for the speech decoder. To prevent catastrophic forgetting and reduce storage implications for few-shot speaker adaptation, we designed two adapters and a unique adaptation procedure.

  • 3 authors
·
Apr 28, 2024

Sparks of Large Audio Models: A Survey and Outlook

This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, Large Audio Models, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding Foundational Large Audio Models, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of Large Audio Models with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models.

  • 11 authors
·
Aug 24, 2023

Lina-Speech: Gated Linear Attention is a Fast and Parameter-Efficient Learner for text-to-speech synthesis

Neural codec language models have achieved state-of-the-art performance in text-to-speech (TTS) synthesis, leveraging scalable architectures like autoregressive transformers and large-scale speech datasets. By framing voice cloning as a prompt continuation task, these models excel at cloning voices from short audio samples. However, this approach is limited in its ability to handle numerous or lengthy speech excerpts, since the concatenation of source and target speech must fall within the maximum context length which is determined during training. In this work, we introduce Lina-Speech, a model that replaces traditional self-attention mechanisms with emerging recurrent architectures like Gated Linear Attention (GLA). Building on the success of initial-state tuning on RWKV, we extend this technique to voice cloning, enabling the use of multiple speech samples and full utilization of the context window in synthesis. This approach is fast, easy to deploy, and achieves performance comparable to fine-tuned baselines when the dataset size ranges from 3 to 15 minutes. Notably, Lina-Speech matches or outperforms state-of-the-art baseline models, including some with a parameter count up to four times higher or trained in an end-to-end style. We release our code and checkpoints. Audio samples are available at https://theodorblackbird.github.io/blog/demo_lina/.

  • 5 authors
·
Oct 30, 2024

FastSpeech: Fast, Robust and Controllable Text to Speech

Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from the mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of the target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech.

  • 7 authors
·
May 22, 2019 1

UniSS: Unified Expressive Speech-to-Speech Translation with Your Voice

The ultimate goal of expressive speech-to-speech translation (S2ST) is to accurately translate spoken content while preserving the speaker identity and emotional style. However, progress in this field is largely hindered by three key challenges: the scarcity of paired speech data that retains expressive styles, the complexity of multi-stage processing pipelines, and the limited transfer of translation capabilities from large language models (LLMs). In this work, we address these challenges by introducing UniSS, a novel single-stage framework for expressive S2ST. Our approach features carefully designed speech semantic and style modeling, enabling seamless integration with existing text-based LLM frameworks to develop a unified text-speech language model. To transfer translation capabilities from text to speech, we propose a cross-modal chain-of-thought prompting process that progressively aligns audio semantics with text and ensures style preservation in the decoded results. Furthermore, we construct and release a large-scale, high-quality expressive S2ST dataset, UniST, comprising 44.8k hours of data. Experimental results show that UniSS significantly outperforms previous methods in translation fidelity and speech quality while preserving voice, emotion, and duration consistency. Our work establishes a simpler and more effective paradigm for building the next generation of expressive S2ST systems. Audio samples are available at https://cmots.github.io/uniss-demo.

  • 8 authors
·
Sep 25

GenSE: Generative Speech Enhancement via Language Models using Hierarchical Modeling

Semantic information refers to the meaning conveyed through words, phrases, and contextual relationships within a given linguistic structure. Humans can leverage semantic information, such as familiar linguistic patterns and contextual cues, to reconstruct incomplete or masked speech signals in noisy environments. However, existing speech enhancement (SE) approaches often overlook the rich semantic information embedded in speech, which is crucial for improving intelligibility, speaker consistency, and overall quality of enhanced speech signals. To enrich the SE model with semantic information, we employ language models as an efficient semantic learner and propose a comprehensive framework tailored for language model-based speech enhancement, called GenSE. Specifically, we approach SE as a conditional language modeling task rather than a continuous signal regression problem defined in existing works. This is achieved by tokenizing speech signals into semantic tokens using a pre-trained self-supervised model and into acoustic tokens using a custom-designed single-quantizer neural codec model. To improve the stability of language model predictions, we propose a hierarchical modeling method that decouples the generation of clean semantic tokens and clean acoustic tokens into two distinct stages. Moreover, we introduce a token chain prompting mechanism during the acoustic token generation stage to ensure timbre consistency throughout the speech enhancement process. Experimental results on benchmark datasets demonstrate that our proposed approach outperforms state-of-the-art SE systems in terms of speech quality and generalization capability.

  • 6 authors
·
Feb 5

Speech is More Than Words: Do Speech-to-Text Translation Systems Leverage Prosody?

The prosody of a spoken utterance, including features like stress, intonation and rhythm, can significantly affect the underlying semantics, and as a consequence can also affect its textual translation. Nevertheless, prosody is rarely studied within the context of speech-to-text translation (S2TT) systems. In particular, end-to-end (E2E) systems have been proposed as well-suited for prosody-aware translation because they have direct access to the speech signal when making translation decisions, but the understanding of whether this is successful in practice is still limited. A main challenge is the difficulty of evaluating prosody awareness in translation. To address this challenge, we introduce an evaluation methodology and a focused benchmark (named ContraProST) aimed at capturing a wide range of prosodic phenomena. Our methodology uses large language models and controllable text-to-speech (TTS) to generate contrastive examples. Through experiments in translating English speech into German, Spanish, and Japanese, we find that (a) S2TT models possess some internal representation of prosody, but the prosody signal is often not strong enough to affect the translations, (b) E2E systems outperform cascades of speech recognition and text translation systems, confirming their theoretical advantage in this regard, and (c) certain cascaded systems also capture prosodic information in the translation, but only to a lesser extent that depends on the particulars of the transcript's surface form.

  • 4 authors
·
Oct 31, 2024

Prediction of speech intelligibility with DNN-based performance measures

This paper presents a speech intelligibility model based on automatic speech recognition (ASR), combining phoneme probabilities from deep neural networks (DNN) and a performance measure that estimates the word error rate from these probabilities. This model does not require the clean speech reference nor the word labels during testing as the ASR decoding step, which finds the most likely sequence of words given phoneme posterior probabilities, is omitted. The model is evaluated via the root-mean-squared error between the predicted and observed speech reception thresholds from eight normal-hearing listeners. The recognition task consists of identifying noisy words from a German matrix sentence test. The speech material was mixed with eight noise maskers covering different modulation types, from speech-shaped stationary noise to a single-talker masker. The prediction performance is compared to five established models and an ASR-model using word labels. Two combinations of features and networks were tested. Both include temporal information either at the feature level (amplitude modulation filterbanks and a feed-forward network) or captured by the architecture (mel-spectrograms and a time-delay deep neural network, TDNN). The TDNN model is on par with the DNN while reducing the number of parameters by a factor of 37; this optimization allows parallel streams on dedicated hearing aid hardware as a forward-pass can be computed within the 10ms of each frame. The proposed model performs almost as well as the label-based model and produces more accurate predictions than the baseline models.

  • 5 authors
·
Mar 17, 2022

FireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications

This work proposes FireRedTTS, a foundation text-to-speech framework, to meet the growing demands for personalized and diverse generative speech applications. The framework comprises three parts: data processing, foundation system, and downstream applications. First, we comprehensively present our data processing pipeline, which transforms massive raw audio into a large-scale high-quality TTS dataset with rich annotations and a wide coverage of content, speaking style, and timbre. Then, we propose a language-model-based foundation TTS system. The speech signal is compressed into discrete semantic tokens via a semantic-aware speech tokenizer, and can be generated by a language model from the prompt text and audio. Then, a two-stage waveform generator is proposed to decode them to the high-fidelity waveform. We present two applications of this system: voice cloning for dubbing and human-like speech generation for chatbots. The experimental results demonstrate the solid in-context learning capability of FireRedTTS, which can stably synthesize high-quality speech consistent with the prompt text and audio. For dubbing, FireRedTTS can clone target voices in a zero-shot way for the UGC scenario and adapt to studio-level expressive voice characters in the PUGC scenario via few-shot fine-tuning with 1-hour recording. Moreover, FireRedTTS achieves controllable human-like speech generation in a casual style with paralinguistic behaviors and emotions via instruction tuning, to better serve spoken chatbots.

  • 7 authors
·
Sep 5, 2024 1

PortaSpeech: Portable and High-Quality Generative Text-to-Speech

Non-autoregressive text-to-speech (NAR-TTS) models such as FastSpeech 2 and Glow-TTS can synthesize high-quality speech from the given text in parallel. After analyzing two kinds of generative NAR-TTS models (VAE and normalizing flow), we find that: VAE is good at capturing the long-range semantics features (e.g., prosody) even with small model size but suffers from blurry and unnatural results; and normalizing flow is good at reconstructing the frequency bin-wise details but performs poorly when the number of model parameters is limited. Inspired by these observations, to generate diverse speech with natural details and rich prosody using a lightweight architecture, we propose PortaSpeech, a portable and high-quality generative text-to-speech model. Specifically, 1) to model both the prosody and mel-spectrogram details accurately, we adopt a lightweight VAE with an enhanced prior followed by a flow-based post-net with strong conditional inputs as the main architecture. 2) To further compress the model size and memory footprint, we introduce the grouped parameter sharing mechanism to the affine coupling layers in the post-net. 3) To improve the expressiveness of synthesized speech and reduce the dependency on accurate fine-grained alignment between text and speech, we propose a linguistic encoder with mixture alignment combining hard inter-word alignment and soft intra-word alignment, which explicitly extracts word-level semantic information. Experimental results show that PortaSpeech outperforms other TTS models in both voice quality and prosody modeling in terms of subjective and objective evaluation metrics, and shows only a slight performance degradation when reducing the model parameters to 6.7M (about 4x model size and 3x runtime memory compression ratio compared with FastSpeech 2). Our extensive ablation studies demonstrate that each design in PortaSpeech is effective.

  • 3 authors
·
Sep 30, 2021

DiffV2S: Diffusion-based Video-to-Speech Synthesis with Vision-guided Speaker Embedding

Recent research has demonstrated impressive results in video-to-speech synthesis which involves reconstructing speech solely from visual input. However, previous works have struggled to accurately synthesize speech due to a lack of sufficient guidance for the model to infer the correct content with the appropriate sound. To resolve the issue, they have adopted an extra speaker embedding as a speaking style guidance from a reference auditory information. Nevertheless, it is not always possible to obtain the audio information from the corresponding video input, especially during the inference time. In this paper, we present a novel vision-guided speaker embedding extractor using a self-supervised pre-trained model and prompt tuning technique. In doing so, the rich speaker embedding information can be produced solely from input visual information, and the extra audio information is not necessary during the inference time. Using the extracted vision-guided speaker embedding representations, we further develop a diffusion-based video-to-speech synthesis model, so called DiffV2S, conditioned on those speaker embeddings and the visual representation extracted from the input video. The proposed DiffV2S not only maintains phoneme details contained in the input video frames, but also creates a highly intelligible mel-spectrogram in which the speaker identities of the multiple speakers are all preserved. Our experimental results show that DiffV2S achieves the state-of-the-art performance compared to the previous video-to-speech synthesis technique.

  • 3 authors
·
Aug 15, 2023

BENYO-S2ST-Corpus-1: A Bilingual English-to-Yoruba Direct Speech-to-Speech Translation Corpus

There is a major shortage of Speech-to-Speech Translation (S2ST) datasets for high resource-to-low resource language pairs such as English-to-Yoruba. Thus, in this study, we curated the Bilingual English-to-Yoruba Speech-to-Speech Translation Corpus Version 1 (BENYO-S2ST-Corpus-1). The corpus is based on a hybrid architecture we developed for large-scale direct S2ST corpus creation at reduced cost. To achieve this, we leveraged non speech-to-speech Standard Yoruba (SY) real-time audios and transcripts in the YORULECT Corpus as well as the corresponding Standard English (SE) transcripts. YORULECT Corpus is small scale(1,504) samples, and it does not have paired English audios. Therefore, we generated the SE audios using pre-trained AI models (i.e. Facebook MMS). We also developed an audio augmentation algorithm named AcoustAug based on three latent acoustic features to generate augmented audios from the raw audios of the two languages. BENYO-S2ST-Corpus-1 has 12,032 audio samples per language, which gives a total of 24,064 sample size. The total audio duration for the two languages is 41.20 hours. This size is quite significant. Beyond building S2ST models, BENYO-S2ST-Corpus-1 can be used to build pretrained models or improve existing ones. The created corpus and Coqui framework were used to build a pretrained Yoruba TTS model (named YoruTTS-0.5) as a proof of concept. The YoruTTS-0.5 gave a F0 RMSE value of 63.54 after 1,000 epochs, which indicates moderate fundamental pitch similarity with the reference real-time audio. Ultimately, the corpus architecture in this study can be leveraged by researchers and developers to curate datasets for multilingual high-resource-to-low-resource African languages. This will bridge the huge digital divides in translations among high and low-resource language pairs. BENYO-S2ST-Corpus-1 and YoruTTS-0.5 are publicly available at (https://bit.ly/40bGMwi).

  • 10 authors
·
Jul 12

StoRM: A Diffusion-based Stochastic Regeneration Model for Speech Enhancement and Dereverberation

Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm).

  • 4 authors
·
Dec 22, 2022

Generalized Multilingual Text-to-Speech Generation with Language-Aware Style Adaptation

Text-to-Speech (TTS) models can generate natural, human-like speech across multiple languages by transforming phonemes into waveforms. However, multilingual TTS remains challenging due to discrepancies in phoneme vocabularies and variations in prosody and speaking style across languages. Existing approaches either train separate models for each language, which achieve high performance at the cost of increased computational resources, or use a unified model for multiple languages that struggles to capture fine-grained, language-specific style variations. In this work, we propose LanStyleTTS, a non-autoregressive, language-aware style adaptive TTS framework that standardizes phoneme representations and enables fine-grained, phoneme-level style control across languages. This design supports a unified multilingual TTS model capable of producing accurate and high-quality speech without the need to train language-specific models. We evaluate LanStyleTTS by integrating it with several state-of-the-art non-autoregressive TTS architectures. Results show consistent performance improvements across different model backbones. Furthermore, we investigate a range of acoustic feature representations, including mel-spectrograms and autoencoder-derived latent features. Our experiments demonstrate that latent encodings can significantly reduce model size and computational cost while preserving high-quality speech generation.

  • 5 authors
·
Apr 11

DelightfulTTS: The Microsoft Speech Synthesis System for Blizzard Challenge 2021

This paper describes the Microsoft end-to-end neural text to speech (TTS) system: DelightfulTTS for Blizzard Challenge 2021. The goal of this challenge is to synthesize natural and high-quality speech from text, and we approach this goal in two perspectives: The first is to directly model and generate waveform in 48 kHz sampling rate, which brings higher perception quality than previous systems with 16 kHz or 24 kHz sampling rate; The second is to model the variation information in speech through a systematic design, which improves the prosody and naturalness. Specifically, for 48 kHz modeling, we predict 16 kHz mel-spectrogram in acoustic model, and propose a vocoder called HiFiNet to directly generate 48 kHz waveform from predicted 16 kHz mel-spectrogram, which can better trade off training efficiency, modelling stability and voice quality. We model variation information systematically from both explicit (speaker ID, language ID, pitch and duration) and implicit (utterance-level and phoneme-level prosody) perspectives: 1) For speaker and language ID, we use lookup embedding in training and inference; 2) For pitch and duration, we extract the values from paired text-speech data in training and use two predictors to predict the values in inference; 3) For utterance-level and phoneme-level prosody, we use two reference encoders to extract the values in training, and use two separate predictors to predict the values in inference. Additionally, we introduce an improved Conformer block to better model the local and global dependency in acoustic model. For task SH1, DelightfulTTS achieves 4.17 mean score in MOS test and 4.35 in SMOS test, which indicates the effectiveness of our proposed system

  • 9 authors
·
Oct 24, 2021

GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement

The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area.

  • 16 authors
·
Jun 17, 2024

SECodec: Structural Entropy-based Compressive Speech Representation Codec for Speech Language Models

With the rapid advancement of large language models (LLMs), discrete speech representations have become crucial for integrating speech into LLMs. Existing methods for speech representation discretization rely on a predefined codebook size and Euclidean distance-based quantization. However, 1) the size of codebook is a critical parameter that affects both codec performance and downstream task training efficiency. 2) The Euclidean distance-based quantization may lead to audio distortion when the size of the codebook is controlled within a reasonable range. In fact, in the field of information compression, structural information and entropy guidance are crucial, but previous methods have largely overlooked these factors. Therefore, we address the above issues from an information-theoretic perspective, we present SECodec, a novel speech representation codec based on structural entropy (SE) for building speech language models. Specifically, we first model speech as a graph, clustering the speech features nodes within the graph and extracting the corresponding codebook by hierarchically and disentangledly minimizing 2D SE. Then, to address the issue of audio distortion, we propose a new quantization method. This method still adheres to the 2D SE minimization principle, adaptively selecting the most suitable token corresponding to the cluster for each incoming original speech node. Furthermore, we develop a Structural Entropy-based Speech Language Model (SESLM) that leverages SECodec. Experimental results demonstrate that SECodec performs comparably to EnCodec in speech reconstruction, and SESLM surpasses VALL-E in zero-shot text-to-speech tasks. Code, demo speeches, speech feature graph, SE codebook, and models are available at https://github.com/wlq2019/SECodec.

  • 8 authors
·
Dec 15, 2024