- Trace formulae for Schrodinger operators on metric graphs with applications to recovering matching conditions The paper is a continuation of the study started in Yorzh1. Schrodinger operators on finite compact metric graphs are considered under the assumption that the matching conditions at the graph vertices are of delta type. Either an infinite series of trace formulae (provided that edge potentials are infinitely smooth) or a finite number of such formulae (in the cases of L_1 and C^M edge potentials) are obtained which link together two different quantum graphs under the assumption that their spectra coincide. Applications are given to the problem of recovering matching conditions for a quantum graph based on its spectrum. 2 authors · Mar 29, 2014
- Real-valued continued fraction of straight lines In an unbounded plane, straight lines are used extensively for mathematical analysis. They are tools of convenience. However, those with high slope values become unbounded at a faster rate than the independent variable. So, straight lines, in this work, are made to be bounded by introducing a parametric nonlinear term that is positive. The straight lines are transformed into bounded nonlinear curves that become unbounded at a much slower rate than the independent variable. This transforming equation can be expressed as a continued fraction of straight lines. The continued fraction is real-valued and converges to the solutions of the transforming equation. Following Euler's method, the continued fraction has been reduced into an infinite series. The usefulness of the bounding nature of continued fraction is demonstrated by solving the problem of image classification. Parameters estimated on the Fashion-MNIST dataset of greyscale images using continued fraction of regression lines have less variance, converge quickly and are more accurate than the linear counterpart. Moreover, this multi-dimensional parametric estimation problem can be expressed on xy- plane using the parameters of the continued fraction and patterns emerge on planar plots. 1 authors · Dec 16, 2024
- Large Language Models for Mathematical Analysis Mathematical problem-solving is a key field in artificial intelligence (AI) and a critical benchmark for evaluating the capabilities of large language models (LLMs). While extensive research has focused on mathematical problem-solving, most existing work and datasets concentrate on computational tasks, leaving gaps in areas like mathematical analysis, which demands rigorous proofs and formal reasoning. We developed the DEMI-MathAnalysis dataset, comprising proof-based problems from mathematical analysis topics such as Sequences and Limits, Infinite Series, and Convex Functions. We also designed a guiding framework to rigorously enhance LLMs' ability to solve these problems. Through fine-tuning LLMs on this dataset and employing our framework, we observed significant improvements in their capability to generate logical, complete, and elegant proofs. This work addresses critical gaps in mathematical reasoning and contributes to advancing trustworthy AI capable of handling formalized mathematical language. The code is publicly accessible at LLMs for Mathematical Analysis. 2 authors · Dec 28, 2024
- Residual Flows for Invertible Generative Modeling Flow-based generative models parameterize probability distributions through an invertible transformation and can be trained by maximum likelihood. Invertible residual networks provide a flexible family of transformations where only Lipschitz conditions rather than strict architectural constraints are needed for enforcing invertibility. However, prior work trained invertible residual networks for density estimation by relying on biased log-density estimates whose bias increased with the network's expressiveness. We give a tractable unbiased estimate of the log density using a "Russian roulette" estimator, and reduce the memory required during training by using an alternative infinite series for the gradient. Furthermore, we improve invertible residual blocks by proposing the use of activation functions that avoid derivative saturation and generalizing the Lipschitz condition to induced mixed norms. The resulting approach, called Residual Flows, achieves state-of-the-art performance on density estimation amongst flow-based models, and outperforms networks that use coupling blocks at joint generative and discriminative modeling. 4 authors · Jun 6, 2019
1 Infinite Feature Selection: A Graph-based Feature Filtering Approach We propose a filtering feature selection framework that considers subsets of features as paths in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse settings with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process. 5 authors · Jun 15, 2020
- Tensor Programs IVb: Adaptive Optimization in the Infinite-Width Limit Going beyond stochastic gradient descent (SGD), what new phenomena emerge in wide neural networks trained by adaptive optimizers like Adam? Here we show: The same dichotomy between feature learning and kernel behaviors (as in SGD) holds for general optimizers as well, including Adam -- albeit with a nonlinear notion of "kernel." We derive the corresponding "neural tangent" and "maximal update" limits for any architecture. Two foundational advances underlie the above results: 1) A new Tensor Program language, NEXORT, that can express how adaptive optimizers process gradients into updates. 2) The introduction of bra-ket notation to drastically simplify expressions and calculations in Tensor Programs. This work summarizes and generalizes all previous results in the Tensor Programs series of papers. 2 authors · Aug 3, 2023
57 FIFO-Diffusion: Generating Infinite Videos from Text without Training We propose a novel inference technique based on a pretrained diffusion model for text-conditional video generation. Our approach, called FIFO-Diffusion, is conceptually capable of generating infinitely long videos without training. This is achieved by iteratively performing diagonal denoising, which concurrently processes a series of consecutive frames with increasing noise levels in a queue; our method dequeues a fully denoised frame at the head while enqueuing a new random noise frame at the tail. However, diagonal denoising is a double-edged sword as the frames near the tail can take advantage of cleaner ones by forward reference but such a strategy induces the discrepancy between training and inference. Hence, we introduce latent partitioning to reduce the training-inference gap and lookahead denoising to leverage the benefit of forward referencing. We have demonstrated the promising results and effectiveness of the proposed methods on existing text-to-video generation baselines. 4 authors · May 19, 2024 8
29 Story-to-Motion: Synthesizing Infinite and Controllable Character Animation from Long Text Generating natural human motion from a story has the potential to transform the landscape of animation, gaming, and film industries. A new and challenging task, Story-to-Motion, arises when characters are required to move to various locations and perform specific motions based on a long text description. This task demands a fusion of low-level control (trajectories) and high-level control (motion semantics). Previous works in character control and text-to-motion have addressed related aspects, yet a comprehensive solution remains elusive: character control methods do not handle text description, whereas text-to-motion methods lack position constraints and often produce unstable motions. In light of these limitations, we propose a novel system that generates controllable, infinitely long motions and trajectories aligned with the input text. (1) We leverage contemporary Large Language Models to act as a text-driven motion scheduler to extract a series of (text, position, duration) pairs from long text. (2) We develop a text-driven motion retrieval scheme that incorporates motion matching with motion semantic and trajectory constraints. (3) We design a progressive mask transformer that addresses common artifacts in the transition motion such as unnatural pose and foot sliding. Beyond its pioneering role as the first comprehensive solution for Story-to-Motion, our system undergoes evaluation across three distinct sub-tasks: trajectory following, temporal action composition, and motion blending, where it outperforms previous state-of-the-art motion synthesis methods across the board. Homepage: https://story2motion.github.io/. 4 authors · Nov 13, 2023
9 Remember, Retrieve and Generate: Understanding Infinite Visual Concepts as Your Personalized Assistant The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM. 5 authors · Oct 17, 2024 2
- Convergence of (generalized) power series solutions of functional equations Solutions of nonlinear functional equations are generally not expressed as a finite number of combinations and compositions of elementary and known special functions. One of the approaches to study them is, firstly, to find formal solutions (that is, series whose terms are described and ordered in some way but which do not converge apriori) and, secondly, to study the convergence or summability of these formal solutions (the existence and uniqueness of actual solutions with the given asymptotic expansion in a certain domain). In this paper we deal only with the convergence of formal functional series having the form of an infinite sum of power functions with (complex, in general) power exponents and satisfying analytical functional equations of the following three types: a differential, q-difference or Mahler equation. 2 authors · Dec 1, 2024
- Commutative Width and Depth Scaling in Deep Neural Networks This paper is the second in the series Commutative Scaling of Width and Depth (WD) about commutativity of infinite width and depth limits in deep neural networks. Our aim is to understand the behaviour of neural functions (functions that depend on a neural network model) as width and depth go to infinity (in some sense), and eventually identify settings under which commutativity holds, i.e. the neural function tends to the same limit no matter how width and depth limits are taken. In this paper, we formally introduce and define the commutativity framework, and discuss its implications on neural network design and scaling. We study commutativity for the neural covariance kernel which reflects how network layers separate data. Our findings extend previous results established in [55] by showing that taking the width and depth to infinity in a deep neural network with skip connections, when branches are suitably scaled to avoid exploding behaviour, result in the same covariance structure no matter how that limit is taken. This has a number of theoretical and practical implications that we discuss in the paper. The proof techniques in this paper are novel and rely on tools that are more accessible to readers who are not familiar with stochastic calculus (used in the proofs of WD(I))). 1 authors · Oct 2, 2023
- Phemenological Modelling of a Group of Eclipsing Binary Stars Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the field of previously known variable star RS Car) and compare results to that obtained using the TP fits. For this system, the statistically optimal number of parameters is 44, but the fit is still worse than that of the NAV fit. Application to the system GSC 3692-00624 argues that the NAV fit is better than the TP one even for the case of EW-type stars with much wider eclipses. Model parameters are listed. 3 authors · Sep 17, 2015
1 Using a Metasurface to Enhance the Radiation Efficiency of Subterahertz Antennas Printed on Thick Substrates This study investigates the possibility of increasing the radiation efficiency of printed antennas and arrays by suppressing their inherent surface waves using a metasurface made of quad-split rings (QSR). A symmetrical resonant microstrip dipole and a four-element series-fed dipole array printed on an infinite grounded dielectric layer (layer thickness: 0.2 mm; relative permittivity: 9.4; tan delta: 0.0005) were simulated with FEKO 2022 software. Conducted at 100-116 GHz, the numerical results revealed extremely low radiation efficiencies of approximately 31% and 40% for the studied dipole and dipole array, respectively, which resulted from the presence of surface waves in the dielectric. However, placing only one QSR near each dipole arm triggered an increase in radiation efficiency by 2.5 times (up to 75%). The use of a metasurface in the form of two small QSR arrays triggered a pronounced improvement in radiation efficiency, reaching 93.6% and 96.5% for the studied dipole and dipole array, respectively. Analysis of the electric field distribution images showed that this enhancement resulted from surface wave suppression. 2 authors · Jan 26, 2024
- Directed Chain Generative Adversarial Networks Real-world data can be multimodal distributed, e.g., data describing the opinion divergence in a community, the interspike interval distribution of neurons, and the oscillators natural frequencies. Generating multimodal distributed real-world data has become a challenge to existing generative adversarial networks (GANs). For example, neural stochastic differential equations (Neural SDEs), treated as infinite-dimensional GANs, have demonstrated successful performance mainly in generating unimodal time series data. In this paper, we propose a novel time series generator, named directed chain GANs (DC-GANs), which inserts a time series dataset (called a neighborhood process of the directed chain or input) into the drift and diffusion coefficients of the directed chain SDEs with distributional constraints. DC-GANs can generate new time series of the same distribution as the neighborhood process, and the neighborhood process will provide the key step in learning and generating multimodal distributed time series. The proposed DC-GANs are examined on four datasets, including two stochastic models from social sciences and computational neuroscience, and two real-world datasets on stock prices and energy consumption. To our best knowledge, DC-GANs are the first work that can generate multimodal time series data and consistently outperforms state-of-the-art benchmarks with respect to measures of distribution, data similarity, and predictive ability. 3 authors · Apr 25, 2023
- Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27]. 2 authors · Sep 29, 2024
- New infinite families in the stable homotopy groups of spheres We identify seven new 192-periodic infinite families of elements in the 2-primary stable homotopy groups of spheres. Although their Hurewicz image is trivial for topological modular forms, they remain nontrivial after T(2)- as well as K(2)-localization. We also obtain new information about 2-torsion and 2-divisibility of some of the previously known 192-periodic infinite families in the stable stems. 3 authors · Apr 15, 2024
- Alternating Apéry-Type Series and Colored Multiple Zeta Values of Level Eight Ap\'{e}ry-type (inverse) binomial series have appeared prominently in the calculations of Feynman integrals in recent years. In our previous work, we showed that a few large classes of the non-alternating Ap\'ery-type (inverse) central binomial series can be evaluated using colored multiple zeta values of level four (i.e., special values of multiple polylogarithms at fourth roots of unity) by expressing them in terms of iterated integrals. In this sequel, we shall prove that for several classes of the alternating versions we need to raise the level to eight. Our main idea is to adopt hyperbolic trigonometric 1-forms to replace the ordinary trigonometric ones used in the non-alternating setting. 2 authors · May 2, 2022
2 AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications. 10 authors · Dec 13, 2023
- Algorithm-assisted discovery of an intrinsic order among mathematical constants In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of zeta(3). Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science. 9 authors · Aug 22, 2023
- On irrationality measure of Thue-Morse constant We provide a non-trivial measure of irrationality for a class of Mahler numbers defined with infinite products which cover the Thue-Morse constant. 2 authors · Jul 20, 2017
- A Universal Space of Arithmetic Functions:The Banach--Hilbert Hybrid Space U We introduce a new functional space U designed to contain all classical arithmetic functions (Mobius, von Mangoldt, Euler phi, divisor functions, Dirichlet characters, etc.). The norm of U combines a Hilbert-type component, based on square summability of Dirichlet coefficients for every s > 1, with a Banach component controlling logarithmic averages of partial sums. We prove that U is a complete Banach space which embeds continuously all standard Hilbert spaces of Dirichlet series and allows natural actions of Dirichlet convolution and shift operators. This framework provides a unified analytic setting for classical and modern problems in multiplicative number theory. 1 authors · Sep 14
18 Infinity: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis We present Infinity, a Bitwise Visual AutoRegressive Modeling capable of generating high-resolution, photorealistic images following language instruction. Infinity redefines visual autoregressive model under a bitwise token prediction framework with an infinite-vocabulary tokenizer & classifier and bitwise self-correction mechanism, remarkably improving the generation capacity and details. By theoretically scaling the tokenizer vocabulary size to infinity and concurrently scaling the transformer size, our method significantly unleashes powerful scaling capabilities compared to vanilla VAR. Infinity sets a new record for autoregressive text-to-image models, outperforming top-tier diffusion models like SD3-Medium and SDXL. Notably, Infinity surpasses SD3-Medium by improving the GenEval benchmark score from 0.62 to 0.73 and the ImageReward benchmark score from 0.87 to 0.96, achieving a win rate of 66%. Without extra optimization, Infinity generates a high-quality 1024x1024 image in 0.8 seconds, making it 2.6x faster than SD3-Medium and establishing it as the fastest text-to-image model. Models and codes will be released to promote further exploration of Infinity for visual generation and unified tokenizer modeling. 8 authors · Dec 5, 2024 2
- Cusps and Commensurability Classes of Hyperbolic 4-Manifolds There are six orientable, compact, flat 3-manifolds that can occur as cusp cross-sections of hyperbolic 4-manifolds. This paper provides criteria for exactly when a given commensurability class of arithmetic hyperbolic 4-manifolds contains a representative with a given cusp type. In particular, for three of the six cusp types, we provide infinitely many examples of commensurability classes that contain no manifolds with cusps of the given type; no such examples were previously known for any cusp type. 1 authors · Sep 24, 2021
- Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research. 6 authors · Dec 13, 2022
- Einstein metrics on aligned homogeneous spaces with two factors Given two homogeneous spaces of the form G_1/K and G_2/K, where G_1 and G_2 are compact simple Lie groups, we study the existence problem for G_1xG_2-invariant Einstein metrics on the homogeneous space M=G_1xG_2/K. For the large subclass C of spaces having three pairwise inequivalent isotropy irreducible summands (12 infinite families and 70 sporadic examples), we obtain that existence is equivalent to the existence of a real root for certain quartic polynomial depending on the dimensions and two Killing constants, which allows a full classification and the possibility to weigh the existence and non-existence pieces of C. 2 authors · Aug 1, 2024