new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 20

RobustDexGrasp: Robust Dexterous Grasping of General Objects from Single-view Perception

Robust grasping of various objects from single-view perception is fundamental for dexterous robots. Previous works often rely on fully observable objects, expert demonstrations, or static grasping poses, which restrict their generalization ability and adaptability to external disturbances. In this paper, we present a reinforcement-learning-based framework that enables zero-shot dynamic dexterous grasping of a wide range of unseen objects from single-view perception, while performing adaptive motions to external disturbances. We utilize a hand-centric object representation for shape feature extraction that emphasizes interaction-relevant local shapes, enhancing robustness to shape variance and uncertainty. To enable effective hand adaptation to disturbances with limited observations, we propose a mixed curriculum learning strategy, which first utilizes imitation learning to distill a policy trained with privileged real-time visual-tactile feedback, and gradually transfers to reinforcement learning to learn adaptive motions under disturbances caused by observation noises and dynamic randomization. Our experiments demonstrate strong generalization in grasping unseen objects with random poses, achieving success rates of 97.0% across 247,786 simulated objects and 94.6% across 512 real objects. We also demonstrate the robustness of our method to various disturbances, including unobserved object movement and external forces, through both quantitative and qualitative evaluations. Project Page: https://zdchan.github.io/Robust_DexGrasp/

  • 5 authors
·
Apr 7 2

Dynamical Linear Bandits

In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order mathcal{O} Big( d sqrt{T}{(1-rho)^{3/2}} Big), where rho is a measure of the stability of the system, and d is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines.

  • 3 authors
·
Nov 16, 2022

Making RL with Preference-based Feedback Efficient via Randomization

Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.

  • 2 authors
·
Oct 23, 2023

Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time

Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time.

  • 6 authors
·
May 24, 2023

A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning

We propose a novel hierarchical Bayesian model for learning with a large (possibly infinite) number of tasks/episodes, which suits well the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific target generative processes, where these local random variables are governed by a higher-level global random variate. The global variable helps memorize the important information from historic episodes while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our model framework, the prediction on a novel episode/task can be seen as a Bayesian inference problem. However, a main obstacle in learning with a large/infinite number of local random variables in online nature, is that one is not allowed to store the posterior distribution of the current local random variable for frequent future updates, typical in conventional variational inference. We need to be able to treat each local variable as a one-time iterate in the optimization. We propose a Normal-Inverse-Wishart model, for which we show that this one-time iterate optimization becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it is not required to maintain computational graphs for the whole gradient optimization steps per episode. Our approach is also different from existing Bayesian meta learning methods in that unlike dealing with a single random variable for the whole episodes, our approach has a hierarchical structure that allows one-time episodic optimization, desirable for principled Bayesian learning with many/infinite tasks. The code is available at https://github.com/minyoungkim21/niwmeta.

  • 2 authors
·
Jun 16, 2023

Dynamic-TreeRPO: Breaking the Independent Trajectory Bottleneck with Structured Sampling

The integration of Reinforcement Learning (RL) into flow matching models for text-to-image (T2I) generation has driven substantial advances in generation quality. However, these gains often come at the cost of exhaustive exploration and inefficient sampling strategies due to slight variation in the sampling group. Building on this insight, we propose Dynamic-TreeRPO, which implements the sliding-window sampling strategy as a tree-structured search with dynamic noise intensities along depth. We perform GRPO-guided optimization and constrained Stochastic Differential Equation (SDE) sampling within this tree structure. By sharing prefix paths of the tree, our design effectively amortizes the computational overhead of trajectory search. With well-designed noise intensities for each tree layer, Dynamic-TreeRPO can enhance the variation of exploration without any extra computational cost. Furthermore, we seamlessly integrate Supervised Fine-Tuning (SFT) and RL paradigm within Dynamic-TreeRPO to construct our proposed LayerTuning-RL, reformulating the loss function of SFT as a dynamically weighted Progress Reward Model (PRM) rather than a separate pretraining method. By associating this weighted PRM with dynamic-adaptive clipping bounds, the disruption of exploration process in Dynamic-TreeRPO is avoided. Benefiting from the tree-structured sampling and the LayerTuning-RL paradigm, our model dynamically explores a diverse search space along effective directions. Compared to existing baselines, our approach demonstrates significant superiority in terms of semantic consistency, visual fidelity, and human preference alignment on established benchmarks, including HPS-v2.1, PickScore, and ImageReward. In particular, our model outperforms SoTA by 4.9%, 5.91%, and 8.66% on those benchmarks, respectively, while improving the training efficiency by nearly 50%.

  • 15 authors
·
Sep 27

DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation

Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024times1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver

  • 4 authors
·
Sep 5, 2024

An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization

Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.

  • 4 authors
·
Apr 11, 2024

Learning More with Less: A Dynamic Dual-Level Down-Sampling Framework for Efficient Policy Optimization

Critic-free methods like GRPO reduce memory demands by estimating advantages from multiple rollouts but tend to converge slowly, as critical learning signals are diluted by an abundance of uninformative samples and tokens. To tackle this challenge, we propose the Dynamic Dual-Level Down-Sampling (D^3S) framework that prioritizes the most informative samples and tokens across groups to improve the efficient of policy optimization. D^3S operates along two levels: (1) the sample-level, which selects a subset of rollouts to maximize advantage variance (Var(A)). We theoretically proven that this selection is positively correlated with the upper bound of the policy gradient norms, yielding higher policy gradients. (2) the token-level, which prioritizes tokens with a high product of advantage magnitude and policy entropy (|A_{i,t}|times H_{i,t}), focusing updates on tokens where the policy is both uncertain and impactful. Moreover, to prevent overfitting to high-signal data, D^3S employs a dynamic down-sampling schedule inspired by curriculum learning. This schedule starts with aggressive down-sampling to accelerate early learning and gradually relaxes to promote robust generalization. Extensive experiments on Qwen2.5 and Llama3.1 demonstrate that integrating D^3S into advanced RL algorithms achieves state-of-the-art performance and generalization while requiring fewer samples and tokens across diverse reasoning benchmarks. Our code is added in the supplementary materials and will be made publicly available.

  • 8 authors
·
Sep 26

Optimizing Return Distributions with Distributional Dynamic Programming

We introduce distributional dynamic programming (DP) methods for optimizing statistical functionals of the return distribution, with standard reinforcement learning as a special case. Previous distributional DP methods could optimize the same class of expected utilities as classic DP. To go beyond expected utilities, we combine distributional DP with stock augmentation, a technique previously introduced for classic DP in the context of risk-sensitive RL, where the MDP state is augmented with a statistic of the rewards obtained so far (since the first time step). We find that a number of recently studied problems can be formulated as stock-augmented return distribution optimization, and we show that we can use distributional DP to solve them. We analyze distributional value and policy iteration, with bounds and a study of what objectives these distributional DP methods can or cannot optimize. We describe a number of applications outlining how to use distributional DP to solve different stock-augmented return distribution optimization problems, for example maximizing conditional value-at-risk, and homeostatic regulation. To highlight the practical potential of stock-augmented return distribution optimization and distributional DP, we combine the core ideas of distributional value iteration with the deep RL agent DQN, and empirically evaluate it for solving instances of the applications discussed.

  • 9 authors
·
Jan 22

An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation

The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs) -- sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of IV-like (IVL) regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.

  • 5 authors
·
Oct 28 1

Control of Medical Digital Twins with Artificial Neural Networks

The objective of personalized medicine is to tailor interventions to an individual patient's unique characteristics. A key technology for this purpose involves medical digital twins, computational models of human biology that can be personalized and dynamically updated to incorporate patient-specific data collected over time. Certain aspects of human biology, such as the immune system, are not easily captured with physics-based models, such as differential equations. Instead, they are often multi-scale, stochastic, and hybrid. This poses a challenge to existing model-based control and optimization approaches that cannot be readily applied to such models. Recent advances in automatic differentiation and neural-network control methods hold promise in addressing complex control problems. However, the application of these approaches to biomedical systems is still in its early stages. This work introduces dynamics-informed neural-network controllers as an alternative approach to control of medical digital twins. As a first use case for this method, the focus is on agent-based models, a versatile and increasingly common modeling platform in biomedicine. The effectiveness of the proposed neural-network control method is illustrated and benchmarked against other methods with two widely-used agent-based model types. The relevance of the method introduced here extends beyond medical digital twins to other complex dynamical systems.

  • 3 authors
·
Mar 18, 2024

Optimizing Chain-of-Thought Reasoners via Gradient Variance Minimization in Rejection Sampling and RL

Chain-of-thought (CoT) reasoning in large language models (LLMs) can be formalized as a latent variable problem, where the model needs to generate intermediate reasoning steps. While prior approaches such as iterative reward-ranked fine-tuning (RAFT) have relied on such formulations, they typically apply uniform inference budgets across prompts, which fails to account for variability in difficulty and convergence behavior. This work identifies the main bottleneck in CoT training as inefficient stochastic gradient estimation due to static sampling strategies. We propose GVM-RAFT, a prompt-specific Dynamic Sample Allocation Strategy designed to minimize stochastic gradient variance under a computational budget constraint. The method dynamically allocates computational resources by monitoring prompt acceptance rates and stochastic gradient norms, ensuring that the resulting gradient variance is minimized. Our theoretical analysis shows that the proposed dynamic sampling strategy leads to accelerated convergence guarantees under suitable conditions. Experiments on mathematical reasoning show that GVM-RAFT achieves a 2-4x speedup and considerable accuracy improvements over vanilla RAFT. The proposed dynamic sampling strategy is general and can be incorporated into other reinforcement learning algorithms, such as GRPO, leading to similar improvements in convergence and test accuracy. Our code is available at https://github.com/RLHFlow/GVM.

Teacher algorithms for curriculum learning of Deep RL in continuously parameterized environments

We consider the problem of how a teacher algorithm can enable an unknown Deep Reinforcement Learning (DRL) student to become good at a skill over a wide range of diverse environments. To do so, we study how a teacher algorithm can learn to generate a learning curriculum, whereby it sequentially samples parameters controlling a stochastic procedural generation of environments. Because it does not initially know the capacities of its student, a key challenge for the teacher is to discover which environments are easy, difficult or unlearnable, and in what order to propose them to maximize the efficiency of learning over the learnable ones. To achieve this, this problem is transformed into a surrogate continuous bandit problem where the teacher samples environments in order to maximize absolute learning progress of its student. We present a new algorithm modeling absolute learning progress with Gaussian mixture models (ALP-GMM). We also adapt existing algorithms and provide a complete study in the context of DRL. Using parameterized variants of the BipedalWalker environment, we study their efficiency to personalize a learning curriculum for different learners (embodiments), their robustness to the ratio of learnable/unlearnable environments, and their scalability to non-linear and high-dimensional parameter spaces. Videos and code are available at https://github.com/flowersteam/teachDeepRL.

  • 4 authors
·
Oct 16, 2019

Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction

Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.

  • 4 authors
·
Oct 15, 2021

Differentially Private Sequential Learning

In a differentially private sequential learning setting, agents introduce endogenous noise into their actions to maintain privacy. Applying this to a standard sequential learning model leads to different outcomes for continuous vs. binary signals. For continuous signals with a nonzero privacy budget, we introduce a novel smoothed randomized response mechanism that adapts noise based on distance to a threshold, unlike traditional randomized response, which applies uniform noise. This enables agents' actions to better reflect both private signals and observed history, accelerating asymptotic learning speed to Theta_{epsilon}(log(n)), compared to Theta(log(n)) in the non-private regime where privacy budget is infinite. Moreover, in the non-private setting, the expected stopping time for the first correct decision and the number of incorrect actions diverge, meaning early agents may make mistakes for an unreasonably long period. In contrast, under a finite privacy budget epsilon in (0,1), both remain finite, highlighting a stark contrast between private and non-private learning. Learning with continuous signals in the private regime is more efficient, as smooth randomized response enhances the log-likelihood ratio over time, improving information aggregation. Conversely, for binary signals, differential privacy noise hinders learning, as agents tend to use a constant randomized response strategy before an information cascade forms, reducing action informativeness and hampering the overall process.

  • 2 authors
·
Feb 26

Last Switch Dependent Bandits with Monotone Payoff Functions

In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.

  • 4 authors
·
Jun 1, 2023

Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching

We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.

  • 4 authors
·
May 28, 2023

A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.

  • 2 authors
·
Nov 4, 2018

Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized Language Model Finetuning Using Shared Randomness

Language model training in distributed settings is limited by the communication cost of gradient exchanges. In this short note, we extend recent work from Malladi et al. (2023), using shared randomness to perform distributed fine-tuning with low bandwidth. The method is a natural decentralized extension of memory-efficient Simultaneous Perturbation Stochastic Approximation (SPSA). Each iteration, each machine seeds a Random Number Generator (RNG) to perform local reproducible perturbations on model weights and calculate and exchange scalar projected gradients, which are then used to update each model. By using a (machine, sample) identifier as the random seed, each model can regenerate one another's perturbations. As machines only exchange single-byte projected gradients, this is highly communication efficient. There are also potential privacy benefits, as projected gradients may be calculated on different training data, and models never access the other's data. Our approach not only drastically reduces communication bandwidth requirements but also accommodates dynamic addition or removal of machines during the training process and retains the memory-efficient and inference-only advantages of recent work. We perform proof-of-concept experiments to demonstrate the potential usefulness of this method, building off of rich literature on distributed optimization and memory-efficient training.

  • 5 authors
·
Jun 16, 2023

Which Invariance Should We Transfer? A Causal Minimax Learning Approach

A major barrier to deploying current machine learning models lies in their non-reliability to dataset shifts. To resolve this problem, most existing studies attempted to transfer stable information to unseen environments. Particularly, independent causal mechanisms-based methods proposed to remove mutable causal mechanisms via the do-operator. Compared to previous methods, the obtained stable predictors are more effective in identifying stable information. However, a key question remains: which subset of this whole stable information should the model transfer, in order to achieve optimal generalization ability? To answer this question, we present a comprehensive minimax analysis from a causal perspective. Specifically, we first provide a graphical condition for the whole stable set to be optimal. When this condition fails, we surprisingly find with an example that this whole stable set, although can fully exploit stable information, is not the optimal one to transfer. To identify the optimal subset under this case, we propose to estimate the worst-case risk with a novel optimization scheme over the intervention functions on mutable causal mechanisms. We then propose an efficient algorithm to search for the subset with minimal worst-case risk, based on a newly defined equivalence relation between stable subsets. Compared to the exponential cost of exhaustively searching over all subsets, our searching strategy enjoys a polynomial complexity. The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.

  • 5 authors
·
Jul 5, 2021

Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances

Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.

  • 4 authors
·
Oct 3, 2023

Dropout's Dream Land: Generalization from Learned Simulators to Reality

A World Model is a generative model used to simulate an environment. World Models have proven capable of learning spatial and temporal representations of Reinforcement Learning environments. In some cases, a World Model offers an agent the opportunity to learn entirely inside of its own dream environment. In this work we explore improving the generalization capabilities from dream environments to real environments (Dream2Real). We present a general approach to improve a controller's ability to transfer from a neural network dream environment to reality at little additional cost. These improvements are gained by drawing on inspiration from Domain Randomization, where the basic idea is to randomize as much of a simulator as possible without fundamentally changing the task at hand. Generally, Domain Randomization assumes access to a pre-built simulator with configurable parameters but oftentimes this is not available. By training the World Model using dropout, the dream environment is capable of creating a nearly infinite number of different dream environments. Previous use cases of dropout either do not use dropout at inference time or averages the predictions generated by multiple sampled masks (Monte-Carlo Dropout). Dropout's Dream Land leverages each unique mask to create a diverse set of dream environments. Our experimental results show that Dropout's Dream Land is an effective technique to bridge the reality gap between dream environments and reality. Furthermore, we additionally perform an extensive set of ablation studies.

  • 2 authors
·
Sep 16, 2021

One Life to Learn: Inferring Symbolic World Models for Stochastic Environments from Unguided Exploration

Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.

  • 5 authors
·
Oct 13 2

Weighted Tallying Bandits: Overcoming Intractability via Repeated Exposure Optimality

In recommender system or crowdsourcing applications of online learning, a human's preferences or abilities are often a function of the algorithm's recent actions. Motivated by this, a significant line of work has formalized settings where an action's loss is a function of the number of times that action was recently played in the prior m timesteps, where m corresponds to a bound on human memory capacity. To more faithfully capture decay of human memory with time, we introduce the Weighted Tallying Bandit (WTB), which generalizes this setting by requiring that an action's loss is a function of a weighted summation of the number of times that arm was played in the last m timesteps. This WTB setting is intractable without further assumption. So we study it under Repeated Exposure Optimality (REO), a condition motivated by the literature on human physiology, which requires the existence of an action that when repetitively played will eventually yield smaller loss than any other sequence of actions. We study the minimization of the complete policy regret (CPR), which is the strongest notion of regret, in WTB under REO. Since m is typically unknown, we assume we only have access to an upper bound M on m. We show that for problems with K actions and horizon T, a simple modification of the successive elimination algorithm has O left( KT + (m+M)K right) CPR. Interestingly, upto an additive (in lieu of mutliplicative) factor in (m+M)K, this recovers the classical guarantee for the simpler stochastic multi-armed bandit with traditional regret. We additionally show that in our setting, any algorithm will suffer additive CPR of Omega left( mK + M right), demonstrating our result is nearly optimal. Our algorithm is computationally efficient, and we experimentally demonstrate its practicality and superiority over natural baselines.

  • 4 authors
·
May 4, 2023

Learning to Actively Learn: A Robust Approach

This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.

  • 3 authors
·
Oct 29, 2020

FIND: Fine-tuning Initial Noise Distribution with Policy Optimization for Diffusion Models

In recent years, large-scale pre-trained diffusion models have demonstrated their outstanding capabilities in image and video generation tasks. However, existing models tend to produce visual objects commonly found in the training dataset, which diverges from user input prompts. The underlying reason behind the inaccurate generated results lies in the model's difficulty in sampling from specific intervals of the initial noise distribution corresponding to the prompt. Moreover, it is challenging to directly optimize the initial distribution, given that the diffusion process involves multiple denoising steps. In this paper, we introduce a Fine-tuning Initial Noise Distribution (FIND) framework with policy optimization, which unleashes the powerful potential of pre-trained diffusion networks by directly optimizing the initial distribution to align the generated contents with user-input prompts. To this end, we first reformulate the diffusion denoising procedure as a one-step Markov decision process and employ policy optimization to directly optimize the initial distribution. In addition, a dynamic reward calibration module is proposed to ensure training stability during optimization. Furthermore, we introduce a ratio clipping algorithm to utilize historical data for network training and prevent the optimized distribution from deviating too far from the original policy to restrain excessive optimization magnitudes. Extensive experiments demonstrate the effectiveness of our method in both text-to-image and text-to-video tasks, surpassing SOTA methods in achieving consistency between prompts and the generated content. Our method achieves 10 times faster than the SOTA approach. Our homepage is available at https://github.com/vpx-ecnu/FIND-website.

  • 7 authors
·
Jul 28, 2024

Introduction to Multi-Armed Bandits

Multi-armed bandits a simple but very powerful framework for algorithms that make decisions over time under uncertainty. An enormous body of work has accumulated over the years, covered in several books and surveys. This book provides a more introductory, textbook-like treatment of the subject. Each chapter tackles a particular line of work, providing a self-contained, teachable technical introduction and a brief review of the further developments; many of the chapters conclude with exercises. The book is structured as follows. The first four chapters are on IID rewards, from the basic model to impossibility results to Bayesian priors to Lipschitz rewards. The next three chapters cover adversarial rewards, from the full-feedback version to adversarial bandits to extensions with linear rewards and combinatorially structured actions. Chapter 8 is on contextual bandits, a middle ground between IID and adversarial bandits in which the change in reward distributions is completely explained by observable contexts. The last three chapters cover connections to economics, from learning in repeated games to bandits with supply/budget constraints to exploration in the presence of incentives. The appendix provides sufficient background on concentration and KL-divergence. The chapters on "bandits with similarity information", "bandits with knapsacks" and "bandits and agents" can also be consumed as standalone surveys on the respective topics.

  • 1 authors
·
Apr 15, 2019

Faster Algorithms for Text-to-Pattern Hamming Distances

We study the classic Text-to-Pattern Hamming Distances problem: given a pattern P of length m and a text T of length n, both over a polynomial-size alphabet, compute the Hamming distance between P and T[i, ., . , i+m-1] for every shift i, under the standard Word-RAM model with Theta(log n)-bit words. - We provide an O(nm) time Las Vegas randomized algorithm for this problem, beating the decades-old O(n m log m) running time [Abrahamson, SICOMP 1987]. We also obtain a deterministic algorithm, with a slightly higher O(nm(log mloglog m)^{1/4}) running time. Our randomized algorithm extends to the k-bounded setting, with running time Obig(n+nk{m}big), removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uzna\'{n}ski, ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020]. - For the (1+epsilon)-approximate version of Text-to-Pattern Hamming Distances, we give an O(epsilon^{-0.93}n) time Monte Carlo randomized algorithm, beating the previous O(epsilon^{-1}n) running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA 2018]. Our approximation algorithm exploits a connection with 3SUM, and uses a combination of Fredman's trick, equality matrix product, and random sampling; in particular, we obtain new results on approximate counting versions of 3SUM and Exact Triangle, which may be of independent interest. Our exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe size is close to quadratic in the number of elements. We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances problem and a range-restricted, counting version of 3SUM.

  • 4 authors
·
Oct 19, 2023

When Neural Code Completion Models Size up the Situation: Attaining Cheaper and Faster Completion through Dynamic Model Inference

Leveraging recent advancements in large language models, modern neural code completion models have demonstrated the capability to generate highly accurate code suggestions. However, their massive size poses challenges in terms of computational costs and environmental impact, hindering their widespread adoption in practical scenarios. Dynamic inference emerges as a promising solution, as it allocates minimal computation during inference while maintaining the model's performance. In this research, we explore dynamic inference within the context of code completion. Initially, we conducted an empirical investigation on GPT-2, focusing on the inference capabilities of intermediate layers for code completion. We found that 54.4% of tokens can be accurately generated using just the first layer, signifying significant computational savings potential. Moreover, despite using all layers, the model still fails to predict 14.5% of tokens correctly, and the subsequent completions continued from them are rarely considered helpful, with only a 4.2% Acceptance Rate. These findings motivate our exploration of dynamic inference in code completion and inspire us to enhance it with a decision-making mechanism that stops the generation of incorrect code. We thus propose a novel dynamic inference method specifically tailored for code completion models. This method aims not only to produce correct predictions with largely reduced computation but also to prevent incorrect predictions proactively. Our extensive evaluation shows that it can averagely skip 1.7 layers out of 16 layers in the models, leading to an 11.2% speedup with only a marginal 1.1% reduction in ROUGE-L.

  • 5 authors
·
Jan 18, 2024

Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts

While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.

  • 9 authors
·
Mar 4 2

Asymmetric Graph Error Control with Low Complexity in Causal Bandits

In this paper, the causal bandit problem is investigated, in which the objective is to select an optimal sequence of interventions on nodes in a causal graph. It is assumed that the graph is governed by linear structural equations; it is further assumed that both the causal topology and the distribution of interventions are unknown. By exploiting the causal relationships between the nodes whose signals contribute to the reward, interventions are optimized. First, based on the difference between the two types of graph identification errors (false positives and negatives), a causal graph learning method is proposed, which strongly reduces sample complexity relative to the prior art by learning sub-graphs. Under the assumption of Gaussian exogenous inputs and minimum-mean squared error weight estimation, a new uncertainty bound tailored to the causal bandit problem is derived. This uncertainty bound drives an upper confidence bound based intervention selection to optimize the reward. To cope with non-stationary bandits, a sub-graph change detection mechanism is proposed, with high sample efficiency. Numerical results compare the new methodology to existing schemes and show a substantial performance improvement in both stationary and non-stationary settings. Compared to existing approaches, the proposed scheme takes 67% fewer samples to learn the causal structure and achieves an average reward gain of 85%.

  • 3 authors
·
Aug 20, 2024

Harder Tasks Need More Experts: Dynamic Routing in MoE Models

In this paper, we introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models, aiming to enhance computational efficiency and model performance by adjusting the number of activated experts based on input difficulty. Unlike traditional MoE approaches that rely on fixed Top-K routing, which activates a predetermined number of experts regardless of the input's complexity, our method dynamically selects experts based on the confidence level in expert selection for each input. This allows for a more efficient utilization of computational resources, activating more experts for complex tasks requiring advanced reasoning and fewer for simpler tasks. Through extensive evaluations, our dynamic routing method demonstrates substantial improvements over conventional Top-2 routing across various benchmarks, achieving an average improvement of 0.7% with less than 90% activated parameters. Further analysis shows our model dispatches more experts to tasks requiring complex reasoning skills, like BBH, confirming its ability to dynamically allocate computational resources in alignment with the input's complexity. Our findings also highlight a variation in the number of experts needed across different layers of the transformer model, offering insights into the potential for designing heterogeneous MoE frameworks. The code and models are available at https://github.com/ZhenweiAn/Dynamic_MoE.

  • 11 authors
·
Mar 12, 2024

Stochastic Interpolants: A Unifying Framework for Flows and Diffusions

A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.

  • 3 authors
·
Mar 15, 2023

Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation

In the realm of deep learning-based recommendation systems, the increasing computational demands, driven by the growing number of users and items, pose a significant challenge to practical deployment. This challenge is primarily twofold: reducing the model size while effectively learning user and item representations for efficient recommendations. Despite considerable advancements in model compression and architecture search, prevalent approaches face notable constraints. These include substantial additional computational costs from pre-training/re-training in model compression and an extensive search space in architecture design. Additionally, managing complexity and adhering to memory constraints is problematic, especially in scenarios with strict time or space limitations. Addressing these issues, this paper introduces a novel learning paradigm, Dynamic Sparse Learning (DSL), tailored for recommendation models. DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance and the model's sparsity distribution during the training. This approach ensures a consistent and minimal parameter budget throughout the full learning lifecycle, paving the way for "end-to-end" efficiency from training to inference. Our extensive experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.

  • 5 authors
·
Feb 5, 2024

Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design

Recent studies have demonstrated the strong empirical performance of diffusion models on discrete sequences across domains from natural language to biological sequence generation. For example, in the protein inverse folding task, conditional diffusion models have achieved impressive results in generating natural-like sequences that fold back into the original structure. However, practical design tasks often require not only modeling a conditional distribution but also optimizing specific task objectives. For instance, we may prefer protein sequences with high stability. To address this, we consider the scenario where we have pre-trained discrete diffusion models that can generate natural-like sequences, as well as reward models that map sequences to task objectives. We then formulate the reward maximization problem within discrete diffusion models, analogous to reinforcement learning (RL), while minimizing the KL divergence against pretrained diffusion models to preserve naturalness. To solve this RL problem, we propose a novel algorithm, DRAKES, that enables direct backpropagation of rewards through entire trajectories generated by diffusion models, by making the originally non-differentiable trajectories differentiable using the Gumbel-Softmax trick. Our theoretical analysis indicates that our approach can generate sequences that are both natural-like and yield high rewards. While similar tasks have been recently explored in diffusion models for continuous domains, our work addresses unique algorithmic and theoretical challenges specific to discrete diffusion models, which arise from their foundation in continuous-time Markov chains rather than Brownian motion. Finally, we demonstrate the effectiveness of DRAKES in generating DNA and protein sequences that optimize enhancer activity and protein stability, respectively, important tasks for gene therapies and protein-based therapeutics.

  • 10 authors
·
Oct 17, 2024

Sparse Diffusion Autoencoder for Test-time Adapting Prediction of Complex Systems

Predicting the behavior of complex systems is critical in many scientific and engineering domains, and hinges on the model's ability to capture their underlying dynamics. Existing methods encode the intrinsic dynamics of high-dimensional observations through latent representations and predict autoregressively. However, these latent representations lose the inherent spatial structure of spatiotemporal dynamics, leading to the predictor's inability to effectively model spatial interactions and neglect emerging dynamics during long-term prediction. In this work, we propose SparseDiff, introducing a test-time adaptation strategy to dynamically update the encoding scheme to accommodate emergent spatiotemporal structures during the long-term evolution of the system. Specifically, we first design a codebook-based sparse encoder, which coarsens the continuous spatial domain into a sparse graph topology. Then, we employ a graph neural ordinary differential equation to model the dynamics and guide a diffusion decoder for reconstruction. SparseDiff autoregressively predicts the spatiotemporal evolution and adjust the sparse topological structure to adapt to emergent spatiotemporal patterns by adaptive re-encoding. Extensive evaluations on representative systems demonstrate that SparseDiff achieves an average prediction error reduction of 49.99\% compared to baselines, requiring only 1\% of the spatial resolution.

  • 4 authors
·
May 23

pyhgf: A neural network library for predictive coding

Bayesian models of cognition have gained considerable traction in computational neuroscience and psychiatry. Their scopes are now expected to expand rapidly to artificial intelligence, providing general inference frameworks to support embodied, adaptable, and energy-efficient autonomous agents. A central theory in this domain is predictive coding, which posits that learning and behaviour are driven by hierarchical probabilistic inferences about the causes of sensory inputs. Biological realism constrains these networks to rely on simple local computations in the form of precision-weighted predictions and prediction errors. This can make this framework highly efficient, but its implementation comes with unique challenges on the software development side. Embedding such models in standard neural network libraries often becomes limiting, as these libraries' compilation and differentiation backends can force a conceptual separation between optimization algorithms and the systems being optimized. This critically departs from other biological principles such as self-monitoring, self-organisation, cellular growth and functional plasticity. In this paper, we introduce pyhgf: a Python package backed by JAX and Rust for creating, manipulating and sampling dynamic networks for predictive coding. We improve over other frameworks by enclosing the network components as transparent, modular and malleable variables in the message-passing steps. The resulting graphs can implement arbitrary computational complexities as beliefs propagation. But the transparency of core variables can also translate into inference processes that leverage self-organisation principles, and express structure learning, meta-learning or causal discovery as the consequence of network structural adaptation to surprising inputs. The code, tutorials and documentation are hosted at: https://github.com/ilabcode/pyhgf.

  • 7 authors
·
Oct 11, 2024

Causal Inference by String Diagram Surgery

Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.

  • 3 authors
·
Nov 20, 2018

Random Teachers are Good Teachers

In this work, we investigate the implicit regularization induced by teacher-student learning dynamics in self-distillation. To isolate its effect, we describe a simple experiment where we consider teachers at random initialization instead of trained teachers. Surprisingly, when distilling a student into such a random teacher, we observe that the resulting model and its representations already possess very interesting characteristics; (1) we observe a strong improvement of the distilled student over its teacher in terms of probing accuracy. (2) The learned representations are data-dependent and transferable between different tasks but deteriorate strongly if trained on random inputs. (3) The student checkpoint contains sparse subnetworks, so-called lottery tickets, and lies on the border of linear basins in the supervised loss landscape. These observations have interesting consequences for several important areas in machine learning: (1) Self-distillation can work solely based on the implicit regularization present in the gradient dynamics without relying on any dark knowledge, (2) self-supervised learning can learn features even in the absence of data augmentation and (3) training dynamics during the early phase of supervised training do not necessarily require label information. Finally, we shed light on an intriguing local property of the loss landscape: the process of feature learning is strongly amplified if the student is initialized closely to the teacher. These results raise interesting questions about the nature of the landscape that have remained unexplored so far. Code is available at https://github.com/safelix/dinopl.

  • 4 authors
·
Feb 23, 2023

Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding

Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences. However, rather than merely generating designs that are natural, we often aim to optimize downstream reward functions while preserving the naturalness of these design spaces. Existing methods for achieving this goal often require ``differentiable'' proxy models (e.g., classifier guidance or DPS) or involve computationally expensive fine-tuning of diffusion models (e.g., classifier-free guidance, RL-based fine-tuning). In our work, we propose a new method to address these challenges. Our algorithm is an iterative sampling method that integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future, into the standard inference procedure of pre-trained diffusion models. Notably, our approach avoids fine-tuning generative models and eliminates the need to construct differentiable models. This enables us to (1) directly utilize non-differentiable features/reward feedback, commonly used in many scientific domains, and (2) apply our method to recent discrete diffusion models in a principled way. Finally, we demonstrate the effectiveness of our algorithm across several domains, including image generation, molecule generation, and DNA/RNA sequence generation. The code is available at https://github.com/masa-ue/SVDD{https://github.com/masa-ue/SVDD}.

  • 10 authors
·
Aug 15, 2024

Anchored Supervised Fine-Tuning

Post-training of large language models involves a fundamental trade-off between supervised fine-tuning (SFT), which efficiently mimics demonstrations but tends to memorize, and reinforcement learning (RL), which achieves better generalization at higher computational cost. Dynamic Fine-Tuning (DFT) recently emerged as a promising middle ground, reweighting SFT objectives with token probabilities and achieving improvements in certain reasoning domains, though it exhibits instability in other tasks. We provide a analysis of DFT through the reward-weighted regression (RWR) framework, revealing that it corresponds to a specific auxiliary distribution choice that yields provably tighter RL bounds than standard SFT. However, our analysis also uncovers a critical limitation: this construction lacks distributional anchoring, leading to progressive drift that undermines training stability. To address this, we propose Anchored Supervised Fine-Tuning (ASFT), which augments DFT's reweighting with lightweight KL regularization to preserve tightness while ensuring stability. Empirically, ASFT consistently outperforms both SFT and DFT across mathematical reasoning, medical knowledge grounding, and code generation, achieving substantial improvements with minimal computational overhead. Our RWR framework provides a systematic lens for understanding post-training methods and demonstrates that principled theoretical analysis leads to both stronger guarantees and practical gains.

  • 7 authors
·
Sep 28

Baichuan-M2: Scaling Medical Capability with Large Verifier System

As large language models (LLMs) advance in conversational and reasoning capabilities, their practical application in healthcare has become a critical research focus. However, there is a notable gap between the performance of medical LLMs on static benchmarks such as USMLE and their utility in real-world clinical decision-making. This discrepancy arises because traditional exams fail to capture the dynamic, interactive nature of medical consultations. To address this challenge, we introduce a novel dynamic verification framework that moves beyond static answer verifier, establishing a large-scale, high-fidelity interactive reinforcement learning system. Our framework comprises two key components: a Patient Simulator that creates realistic clinical environments using de-identified medical records, and a Clinical Rubrics Generator that dynamically produces multi-dimensional evaluation metrics. Building on this foundation, we develop Baichuan-M2, a 32B-parameter medical augmented reasoning model trained through a multi-stage reinforcement learning strategy with an improved Group Relative Policy Optimization (GRPO) algorithm. Evaluated on HealthBench, Baichuan-M2 outperforms all other open-source models and most advanced closed-source counterparts, achieving a score above 32 on the challenging HealthBench Hard benchmark-previously exceeded only by GPT-5. Our work demonstrates that robust dynamic verifier system is essential for aligning LLM capabilities with practical clinical applications, establishing a new Pareto front in the performance-parameter trade-off for medical AI deployment.

TiKMiX: Take Data Influence into Dynamic Mixture for Language Model Pre-training

The data mixture used in the pre-training of a language model is a cornerstone of its final performance. However, a static mixing strategy is suboptimal, as the model's learning preferences for various data domains shift dynamically throughout training. Crucially, observing these evolving preferences in a computationally efficient manner remains a significant challenge. To address this, we propose TiKMiX, a method that dynamically adjusts the data mixture according to the model's evolving preferences. TiKMiX introduces Group Influence, an efficient metric for evaluating the impact of data domains on the model. This metric enables the formulation of the data mixing problem as a search for an optimal, influence-maximizing distribution. We solve this via two approaches: TiKMiX-D for direct optimization, and TiKMiX-M, which uses a regression model to predict a superior mixture. We trained models with different numbers of parameters, on up to 1 trillion tokens. TiKMiX-D exceeds the performance of state-of-the-art methods like REGMIX while using just 20% of the computational resources. TiKMiX-M leads to an average performance gain of 2% across 9 downstream benchmarks. Our experiments reveal that a model's data preferences evolve with training progress and scale, and we demonstrate that dynamically adjusting the data mixture based on Group Influence, a direct measure of these preferences, significantly improves performance by mitigating the underdigestion of data seen with static ratios.

  • 9 authors
·
Aug 25 2