new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 25

Deep Structured Feature Networks for Table Detection and Tabular Data Extraction from Scanned Financial Document Images

Automatic table detection in PDF documents has achieved a great success but tabular data extraction are still challenging due to the integrity and noise issues in detected table areas. The accurate data extraction is extremely crucial in finance area. Inspired by this, the aim of this research is proposing an automated table detection and tabular data extraction from financial PDF documents. We proposed a method that consists of three main processes, which are detecting table areas with a Faster R-CNN (Region-based Convolutional Neural Network) model with Feature Pyramid Network (FPN) on each page image, extracting contents and structures by a compounded layout segmentation technique based on optical character recognition (OCR) and formulating regular expression rules for table header separation. The tabular data extraction feature is embedded with rule-based filtering and restructuring functions that are highly scalable. We annotate a new Financial Documents dataset with table regions for the experiment. The excellent table detection performance of the detection model is obtained from our customized dataset. The main contributions of this paper are proposing the Financial Documents dataset with table-area annotations, the superior detection model and the rule-based layout segmentation technique for the tabular data extraction from PDF files.

  • 5 authors
·
Feb 20, 2021

DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models

Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.

  • 23 authors
·
Jun 17, 2024

DocReward: A Document Reward Model for Structuring and Stylizing

Recent advances in agentic workflows have enabled the automation of tasks such as professional document generation. However, they primarily focus on textual quality, neglecting visual structure and style, which are crucial for readability and engagement. This gap arises mainly from the absence of suitable reward models to guide agentic workflows toward producing documents with stronger structural and stylistic quality. To address this, we propose DocReward, a document reward model that evaluates documents based on their structure and style. We construct a multi-domain dataset DocPair of 117K paired documents, covering 32 domains and 267 document types, each including a high- and low-professionalism document with identical content but different structure and style. This enables the model to evaluate professionalism comprehensively, and in a textual-quality-agnostic way. DocReward is trained using the Bradley-Terry loss to score documents, penalizing predictions that contradict the annotated ranking. To assess the performance of reward models, we create a test dataset containing document bundles ranked by well-educated human evaluators. Notably, DocReward outperforms GPT-4o and GPT-5 in accuracy by 30.6 and 19.4 percentage points, respectively, demonstrating its superiority over baselines. In an extrinsic evaluation of document generation, DocReward achieves a significantly higher win rate of 60.8%, compared to GPT-5's 37.7% win rate, demonstrating its utility in guiding generation agents toward producing human-preferred documents.

Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration

Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83\% to 84.05\%, with further enhancement to 94.25\% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.

QuRating: Selecting High-Quality Data for Training Language Models

Selecting high-quality pre-training data is important for creating capable language models, but existing methods rely on simple heuristics. We introduce QuRating, a method for selecting pre-training data that captures the abstract qualities of texts which humans intuitively perceive. In this paper, we investigate four qualities - writing style, required expertise, facts & trivia, and educational value. We find that LLMs are able to discern these qualities and observe that they are better at making pairwise judgments of texts than at rating the quality of a text directly. We train a QuRater model to learn scalar ratings from pairwise judgments, and use it to annotate a 260B training corpus with quality ratings for each of the four criteria. In our experiments, we select 30B tokens according to the different quality ratings and train 1.3B-parameter language models on the selected data. We find that it is important to balance quality and diversity, as selecting only the highest-rated documents leads to poor results. When we sample using quality ratings as logits over documents, our models achieve lower perplexity and stronger in-context learning performance than baselines. Beyond data selection, we use the quality ratings to construct a training curriculum which improves performance without changing the training dataset. We extensively analyze the quality ratings and discuss their characteristics, biases, and wider implications.

  • 4 authors
·
Feb 15, 2024

Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation

Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.

  • 2 authors
·
Nov 22, 2024

RedactBuster: Entity Type Recognition from Redacted Documents

The widespread exchange of digital documents in various domains has resulted in abundant private information being shared. This proliferation necessitates redaction techniques to protect sensitive content and user privacy. While numerous redaction methods exist, their effectiveness varies, with some proving more robust than others. As such, the literature proposes several deanonymization techniques, raising awareness of potential privacy threats. However, while none of these methods are successful against the most effective redaction techniques, these attacks only focus on the anonymized tokens and ignore the sentence context. In this paper, we propose RedactBuster, the first deanonymization model using sentence context to perform Named Entity Recognition on reacted text. Our methodology leverages fine-tuned state-of-the-art Transformers and Deep Learning models to determine the anonymized entity types in a document. We test RedactBuster against the most effective redaction technique and evaluate it using the publicly available Text Anonymization Benchmark (TAB). Our results show accuracy values up to 0.985 regardless of the document nature or entity type. In raising awareness of this privacy issue, we propose a countermeasure we call character evasion that helps strengthen the secrecy of sensitive information. Furthermore, we make our model and testbed open-source to aid researchers and practitioners in evaluating the resilience of novel redaction techniques and enhancing document privacy.

  • 5 authors
·
Apr 19, 2024

Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data

For humans to trust the fluent generations of large language models (LLMs), they must be able to verify their correctness against trusted, external sources. Recent efforts aim to increase verifiability through citations of retrieved documents or post-hoc provenance. However, such citations are prone to mistakes that further complicate their verifiability. To address these limitations, we tackle the verifiability goal with a different philosophy: we trivialize the verification process by developing models that quote verbatim statements from trusted sources in pre-training data. We propose Quote-Tuning, which demonstrates the feasibility of aligning LLMs to leverage memorized information and quote from pre-training data. Quote-Tuning quantifies quoting against large corpora with efficient membership inference tools, and uses the amount of quotes as an implicit reward signal to construct a synthetic preference dataset for quoting, without any human annotation. Next, the target model is aligned to quote using preference optimization algorithms. Experimental results show that Quote-Tuning significantly increases the percentage of LLM generation quoted verbatim from high-quality pre-training documents by 55% to 130% relative to untuned models while maintaining response quality. Further experiments demonstrate that Quote-Tuning generalizes quoting to out-of-domain data, is applicable in different tasks, and provides additional benefits to truthfulness. Quote-Tuning not only serves as a hassle-free method to increase quoting but also opens up avenues for improving LLM trustworthiness through better verifiability.

  • 5 authors
·
Apr 4, 2024

Documenting Ethical Considerations in Open Source AI Models

Background: The development of AI-enabled software heavily depends on AI model documentation, such as model cards, due to different domain expertise between software engineers and model developers. From an ethical standpoint, AI model documentation conveys critical information on ethical considerations along with mitigation strategies for downstream developers to ensure the delivery of ethically compliant software. However, knowledge on such documentation practice remains scarce. Aims: The objective of our study is to investigate how developers document ethical aspects of open source AI models in practice, aiming at providing recommendations for future documentation endeavours. Method: We selected three sources of documentation on GitHub and Hugging Face, and developed a keyword set to identify ethics-related documents systematically. After filtering an initial set of 2,347 documents, we identified 265 relevant ones and performed thematic analysis to derive the themes of ethical considerations. Results: Six themes emerge, with the three largest ones being model behavioural risks, model use cases, and model risk mitigation. Conclusions: Our findings reveal that open source AI model documentation focuses on articulating ethical problem statements and use case restrictions. We further provide suggestions to various stakeholders for improving documentation practice regarding ethical considerations.

  • 5 authors
·
Jun 26, 2024

DocXPand-25k: a large and diverse benchmark dataset for identity documents analysis

Identity document (ID) image analysis has become essential for many online services, like bank account opening or insurance subscription. In recent years, much research has been conducted on subjects like document localization, text recognition and fraud detection, to achieve a level of accuracy reliable enough to automatize identity verification. However, there are only a few available datasets to benchmark ID analysis methods, mainly because of privacy restrictions, security requirements and legal reasons. In this paper, we present the DocXPand-25k dataset, which consists of 24,994 richly labeled IDs images, generated using custom-made vectorial templates representing nine fictitious ID designs, including four identity cards, two residence permits and three passports designs. These synthetic IDs feature artificially generated personal information (names, dates, identifiers, faces, barcodes, ...), and present a rich diversity in the visual layouts and textual contents. We collected about 5.8k diverse backgrounds coming from real-world photos, scans and screenshots of IDs to guarantee the variety of the backgrounds. The software we wrote to generate these images has been published (https://github.com/QuickSign/docxpand/) under the terms of the MIT license, and our dataset has been published (https://github.com/QuickSign/docxpand/releases/tag/v1.0.0) under the terms of the CC-BY-NC-SA 4.0 License.

  • 5 authors
·
Jul 30, 2024

BeHonest: Benchmarking Honesty of Large Language Models

Previous works on Large Language Models (LLMs) have mainly focused on evaluating their helpfulness or harmlessness. However, honesty, another crucial alignment criterion, has received relatively less attention. Dishonest behaviors in LLMs, such as spreading misinformation and defrauding users, eroding user trust, and causing real-world harm, present severe risks that intensify as these models approach superintelligence levels. Enhancing honesty in LLMs addresses critical deficiencies and helps uncover latent capabilities that are not readily expressed. This underscores the urgent need for reliable methods and benchmarks to effectively ensure and evaluate the honesty of LLMs. In this paper, we introduce BeHonest, a pioneering benchmark specifically designed to assess honesty in LLMs comprehensively. BeHonest evaluates three essential aspects of honesty: awareness of knowledge boundaries, avoidance of deceit, and consistency in responses. Building on this foundation, we designed 10 scenarios to evaluate and analyze 9 popular LLMs on the market, including both closed-source and open-source models from different model families with varied model sizes. Our findings indicate that there is still significant room for improvement in the honesty of LLMs. We also encourage the AI community to prioritize honesty alignment in LLMs. Our benchmark and code can be found at: https://github.com/GAIR-NLP/BeHonest.

  • 8 authors
·
Jun 19, 2024

From Faithfulness to Correctness: Generative Reward Models that Think Critically

Through reinforcement learning with verifiable rewards (RLVR), large language models have achieved substantial progress in domains with easily verifiable outcomes, such as mathematics and coding. However, when applied to more complex tasks like open-domain question answering, RLVR faces significant challenges due to the difficulty of verifying correctness. The nuanced and ambiguous nature of real-world knowledge makes it difficult to reliably evaluate correctness in these settings, necessitating further abilities that extend beyond mere logical consistency to encompass an understanding and assessment of both external and internal knowledge. Recent work has primarily focused on improving faithfulness, defined as semantic alignment with supporting documents, which can cause models to rely excessively on external sources and diminish their capacity for critical assessment. To address this, we propose the Thinking-supervised Reward Model (TRM), which incorporates sentence-level thinking supervision to endow reward models with critical thinking abilities. Given a query, answer, and supporting documents, TRM first assesses the faithfulness of each answer sentence to the supporting documents, and then applies a reasoning step to evaluate sentence-level correctness. By structuring reward modeling as a sequence of faithfulness, reasoning, and correctness evaluations, TRM encourages models to critically assess and leverage both external and internal knowledge. Experiments on reward signals demonstrate that TRM substantially improves the identification of incorrect sentences, and incorporating TRM into policy optimization leads to significant gains in both answer correctness and usefulness.

  • 6 authors
·
Sep 29

FinCriticalED: A Visual Benchmark for Financial Fact-Level OCR Evaluation

We introduce FinCriticalED (Financial Critical Error Detection), a visual benchmark for evaluating OCR and vision language models on financial documents at the fact level. Financial documents contain visually dense and table heavy layouts where numerical and temporal information is tightly coupled with structure. In high stakes settings, small OCR mistakes such as sign inversion or shifted dates can lead to materially different interpretations, while traditional OCR metrics like ROUGE and edit distance capture only surface level text similarity. \ficriticaled provides 500 image-HTML pairs with expert annotated financial facts covering over seven hundred numerical and temporal facts. It introduces three key contributions. First, it establishes the first fact level evaluation benchmark for financial document understanding, shifting evaluation from lexical overlap to domain critical factual correctness. Second, all annotations are created and verified by financial experts with strict quality control over signs, magnitudes, and temporal expressions. Third, we develop an LLM-as-Judge evaluation pipeline that performs structured fact extraction and contextual verification for visually complex financial documents. We benchmark OCR systems, open source vision language models, and proprietary models on FinCriticalED. Results show that although the strongest proprietary models achieve the highest factual accuracy, substantial errors remain in visually intricate numerical and temporal contexts. Through quantitative evaluation and expert case studies, FinCriticalED provides a rigorous foundation for advancing visual factual precision in financial and other precision critical domains.

  • 13 authors
·
Nov 18

Offline Signature Verification on Real-World Documents

Research on offline signature verification has explored a large variety of methods on multiple signature datasets, which are collected under controlled conditions. However, these datasets may not fully reflect the characteristics of the signatures in some practical use cases. Real-world signatures extracted from the formal documents may contain different types of occlusions, for example, stamps, company seals, ruling lines, and signature boxes. Moreover, they may have very high intra-class variations, where even genuine signatures resemble forgeries. In this paper, we address a real-world writer independent offline signature verification problem, in which, a bank's customers' transaction request documents that contain their occluded signatures are compared with their clean reference signatures. Our proposed method consists of two main components, a stamp cleaning method based on CycleGAN and signature representation based on CNNs. We extensively evaluate different verification setups, fine-tuning strategies, and signature representation approaches to have a thorough analysis of the problem. Moreover, we conduct a human evaluation to show the challenging nature of the problem. We run experiments both on our custom dataset, as well as on the publicly available Tobacco-800 dataset. The experimental results validate the difficulty of offline signature verification on real-world documents. However, by employing the stamp cleaning process, we improve the signature verification performance significantly.

  • 4 authors
·
Apr 25, 2020

Evaluating the Factual Consistency of Large Language Models Through News Summarization

While large language models (LLMs) have proven to be effective on a large variety of tasks, they are also known to hallucinate information. To measure whether an LLM prefers factually consistent continuations of its input, we propose a new benchmark called FIB(Factual Inconsistency Benchmark) that focuses on the task of summarization. Specifically, our benchmark involves comparing the scores an LLM assigns to a factually consistent versus a factually inconsistent summary for an input news article. For factually consistent summaries, we use human-written reference summaries that we manually verify as factually consistent. To generate summaries that are factually inconsistent, we generate summaries from a suite of summarization models that we have manually annotated as factually inconsistent. A model's factual consistency is then measured according to its accuracy, i.e.\ the proportion of documents where it assigns a higher score to the factually consistent summary. To validate the usefulness of FIB, we evaluate 23 large language models ranging from 1B to 176B parameters from six different model families including BLOOM and OPT. We find that existing LLMs generally assign a higher score to factually consistent summaries than to factually inconsistent summaries. However, if the factually inconsistent summaries occur verbatim in the document, then LLMs assign a higher score to these factually inconsistent summaries than factually consistent summaries. We validate design choices in our benchmark including the scoring method and source of distractor summaries. Our code and benchmark data can be found at https://github.com/r-three/fib.

  • 6 authors
·
Nov 15, 2022

Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?

Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.

Detecting Pretraining Data from Large Language Models

Although large language models (LLMs) are widely deployed, the data used to train them is rarely disclosed. Given the incredible scale of this data, up to trillions of tokens, it is all but certain that it includes potentially problematic text such as copyrighted materials, personally identifiable information, and test data for widely reported reference benchmarks. However, we currently have no way to know which data of these types is included or in what proportions. In this paper, we study the pretraining data detection problem: given a piece of text and black-box access to an LLM without knowing the pretraining data, can we determine if the model was trained on the provided text? To facilitate this study, we introduce a dynamic benchmark WIKIMIA that uses data created before and after model training to support gold truth detection. We also introduce a new detection method Min-K% Prob based on a simple hypothesis: an unseen example is likely to contain a few outlier words with low probabilities under the LLM, while a seen example is less likely to have words with such low probabilities. Min-K% Prob can be applied without any knowledge about the pretraining corpus or any additional training, departing from previous detection methods that require training a reference model on data that is similar to the pretraining data. Moreover, our experiments demonstrate that Min-K% Prob achieves a 7.4% improvement on WIKIMIA over these previous methods. We apply Min-K% Prob to two real-world scenarios, copyrighted book detection, and contaminated downstream example detection, and find it a consistently effective solution.

  • 8 authors
·
Oct 25, 2023

Natural Logic-guided Autoregressive Multi-hop Document Retrieval for Fact Verification

A key component of fact verification is thevevidence retrieval, often from multiple documents. Recent approaches use dense representations and condition the retrieval of each document on the previously retrieved ones. The latter step is performed over all the documents in the collection, requiring storing their dense representations in an index, thus incurring a high memory footprint. An alternative paradigm is retrieve-and-rerank, where documents are retrieved using methods such as BM25, their sentences are reranked, and further documents are retrieved conditioned on these sentences, reducing the memory requirements. However, such approaches can be brittle as they rely on heuristics and assume hyperlinks between documents. We propose a novel retrieve-and-rerank method for multi-hop retrieval, that consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents using an autoregressive formulation and is guided by a proof system based on natural logic that dynamically terminates the retrieval process if the evidence is deemed sufficient. This method is competitive with current state-of-the-art methods on FEVER, HoVer and FEVEROUS-S, while using 5 to 10 times less memory than competing systems. Evaluation on an adversarial dataset indicates improved stability of our approach compared to commonly deployed threshold-based methods. Finally, the proof system helps humans predict model decisions correctly more often than using the evidence alone.

  • 2 authors
·
Dec 10, 2022

FABLES: Evaluating faithfulness and content selection in book-length summarization

While long-context large language models (LLMs) can technically summarize book-length documents (>100K tokens), the length and complexity of the documents have so far prohibited evaluations of input-dependent aspects like faithfulness. In this paper, we conduct the first large-scale human evaluation of faithfulness and content selection on LLM-generated summaries of fictional books. Our study mitigates the issue of data contamination by focusing on summaries of books published in 2023 or 2024, and we hire annotators who have fully read each book prior to the annotation task to minimize cost and cognitive burden. We collect FABLES, a dataset of annotations on 3,158 claims made in LLM-generated summaries of 26 books, at a cost of $5.2K USD, which allows us to rank LLM summarizers based on faithfulness: Claude-3-Opus significantly outperforms all closed-source LLMs, while the open-source Mixtral is on par with GPT-3.5-Turbo. An analysis of the annotations reveals that most unfaithful claims relate to events and character states, and they generally require indirect reasoning over the narrative to invalidate. While LLM-based auto-raters have proven reliable for factuality and coherence in other settings, we implement several LLM raters of faithfulness and find that none correlates strongly with human annotations, especially with regard to detecting unfaithful claims. Our experiments suggest that detecting unfaithful claims is an important future direction not only for summarization evaluation but also as a testbed for long-context understanding. Finally, we move beyond faithfulness by exploring content selection errors in book-length summarization: we develop a typology of omission errors related to crucial narrative elements and also identify a systematic over-emphasis on events occurring towards the end of the book.

  • 8 authors
·
Apr 1, 2024

The Many Dimensions of Truthfulness: Crowdsourcing Misinformation Assessments on a Multidimensional Scale

Recent work has demonstrated the viability of using crowdsourcing as a tool for evaluating the truthfulness of public statements. Under certain conditions such as: (1) having a balanced set of workers with different backgrounds and cognitive abilities; (2) using an adequate set of mechanisms to control the quality of the collected data; and (3) using a coarse grained assessment scale, the crowd can provide reliable identification of fake news. However, fake news are a subtle matter: statements can be just biased ("cherrypicked"), imprecise, wrong, etc. and the unidimensional truth scale used in existing work cannot account for such differences. In this paper we propose a multidimensional notion of truthfulness and we ask the crowd workers to assess seven different dimensions of truthfulness selected based on existing literature: Correctness, Neutrality, Comprehensibility, Precision, Completeness, Speaker's Trustworthiness, and Informativeness. We deploy a set of quality control mechanisms to ensure that the thousands of assessments collected on 180 publicly available fact-checked statements distributed over two datasets are of adequate quality, including a custom search engine used by the crowd workers to find web pages supporting their truthfulness assessments. A comprehensive analysis of crowdsourced judgments shows that: (1) the crowdsourced assessments are reliable when compared to an expert-provided gold standard; (2) the proposed dimensions of truthfulness capture independent pieces of information; (3) the crowdsourcing task can be easily learned by the workers; and (4) the resulting assessments provide a useful basis for a more complete estimation of statement truthfulness.

  • 7 authors
·
Aug 2, 2021

Toward Real Text Manipulation Detection: New Dataset and New Solution

With the surge in realistic text tampering, detecting fraudulent text in images has gained prominence for maintaining information security. However, the high costs associated with professional text manipulation and annotation limit the availability of real-world datasets, with most relying on synthetic tampering, which inadequately replicates real-world tampering attributes. To address this issue, we present the Real Text Manipulation (RTM) dataset, encompassing 14,250 text images, which include 5,986 manually and 5,258 automatically tampered images, created using a variety of techniques, alongside 3,006 unaltered text images for evaluating solution stability. Our evaluations indicate that existing methods falter in text forgery detection on the RTM dataset. We propose a robust baseline solution featuring a Consistency-aware Aggregation Hub and a Gated Cross Neighborhood-attention Fusion module for efficient multi-modal information fusion, supplemented by a Tampered-Authentic Contrastive Learning module during training, enriching feature representation distinction. This framework, extendable to other dual-stream architectures, demonstrated notable localization performance improvements of 7.33% and 6.38% on manual and overall manipulations, respectively. Our contributions aim to propel advancements in real-world text tampering detection. Code and dataset will be made available at https://github.com/DrLuo/RTM

  • 7 authors
·
Dec 11, 2023

Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview

The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them.

  • 3 authors
·
Jul 5, 2024

Predicting the Original Appearance of Damaged Historical Documents

Historical documents encompass a wealth of cultural treasures but suffer from severe damages including character missing, paper damage, and ink erosion over time. However, existing document processing methods primarily focus on binarization, enhancement, etc., neglecting the repair of these damages. To this end, we present a new task, termed Historical Document Repair (HDR), which aims to predict the original appearance of damaged historical documents. To fill the gap in this field, we propose a large-scale dataset HDR28K and a diffusion-based network DiffHDR for historical document repair. Specifically, HDR28K contains 28,552 damaged-repaired image pairs with character-level annotations and multi-style degradations. Moreover, DiffHDR augments the vanilla diffusion framework with semantic and spatial information and a meticulously designed character perceptual loss for contextual and visual coherence. Experimental results demonstrate that the proposed DiffHDR trained using HDR28K significantly surpasses existing approaches and exhibits remarkable performance in handling real damaged documents. Notably, DiffHDR can also be extended to document editing and text block generation, showcasing its high flexibility and generalization capacity. We believe this study could pioneer a new direction of document processing and contribute to the inheritance of invaluable cultures and civilizations. The dataset and code is available at https://github.com/yeungchenwa/HDR.

  • 6 authors
·
Dec 16, 2024 2

Did the Neurons Read your Book? Document-level Membership Inference for Large Language Models

With large language models (LLMs) poised to become embedded in our daily lives, questions are starting to be raised about the data they learned from. These questions range from potential bias or misinformation LLMs could retain from their training data to questions of copyright and fair use of human-generated text. However, while these questions emerge, developers of the recent state-of-the-art LLMs become increasingly reluctant to disclose details on their training corpus. We here introduce the task of document-level membership inference for real-world LLMs, i.e. inferring whether the LLM has seen a given document during training or not. First, we propose a procedure for the development and evaluation of document-level membership inference for LLMs by leveraging commonly used data sources for training and the model release date. We then propose a practical, black-box method to predict document-level membership and instantiate it on OpenLLaMA-7B with both books and academic papers. We show our methodology to perform very well, reaching an AUC of 0.856 for books and 0.678 for papers. We then show our approach to outperform the sentence-level membership inference attacks used in the privacy literature for the document-level membership task. We further evaluate whether smaller models might be less sensitive to document-level inference and show OpenLLaMA-3B to be approximately as sensitive as OpenLLaMA-7B to our approach. Finally, we consider two mitigation strategies and find the AUC to slowly decrease when only partial documents are considered but to remain fairly high when the model precision is reduced. Taken together, our results show that accurate document-level membership can be inferred for LLMs, increasing the transparency of technology poised to change our lives.

  • 4 authors
·
Oct 23, 2023

DocHop-QA: Towards Multi-Hop Reasoning over Multimodal Document Collections

Despite recent advances in large language models (LLMs), most QA benchmarks are still confined to single-paragraph or single-document settings, failing to capture the complexity of real-world information-seeking tasks. Practical QA often requires multi-hop reasoning over information distributed across multiple documents, modalities, and structural formats. Although prior datasets made progress in this area, they rely heavily on Wikipedia-based content and unimodal plain text, with shallow reasoning paths that typically produce brief phrase-level or single-sentence answers, thus limiting their realism and generalizability. We propose DocHop-QA, a large-scale benchmark comprising 11,379 QA instances for multimodal, multi-document, multi-hop question answering. Constructed from publicly available scientific documents sourced from PubMed, DocHop-QA is domain-agnostic and incorporates diverse information formats, including textual passages, tables, and structural layout cues. Unlike existing datasets, DocHop-QA does not rely on explicitly hyperlinked documents; instead, it supports open-ended reasoning through semantic similarity and layout-aware evidence synthesis. To scale realistic QA construction, we designed an LLM-driven pipeline grounded in 11 high-frequency scientific question concepts. We evaluated DocHop-QA through four tasks spanning structured index prediction, generative answering, and multimodal integration, reflecting both discriminative and generative paradigms. These tasks demonstrate DocHop-QA's capacity to support complex, multimodal reasoning across multiple documents.

  • 6 authors
·
Aug 20

BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks

Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows, extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .

  • 43 authors
·
Dec 5, 2024 2

ChroniclingAmericaQA: A Large-scale Question Answering Dataset based on Historical American Newspaper Pages

Question answering (QA) and Machine Reading Comprehension (MRC) tasks have significantly advanced in recent years due to the rapid development of deep learning techniques and, more recently, large language models. At the same time, many benchmark datasets have become available for QA and MRC tasks. However, most existing large-scale benchmark datasets have been created predominantly using synchronous document collections like Wikipedia or the Web. Archival document collections, such as historical newspapers, contain valuable information from the past that is still not widely used to train large language models. To further contribute to advancing QA and MRC tasks and to overcome the limitation of previous datasets, we introduce ChroniclingAmericaQA, a large-scale dataset with 485K question-answer pairs created based on the historical newspaper collection Chronicling America. Our dataset is constructed from a subset of the Chronicling America newspaper collection spanning 120 years. One of the significant challenges for utilizing digitized historical newspaper collections is the low quality of OCR text. Therefore, to enable realistic testing of QA models, our dataset can be used in three different ways: answering questions from raw and noisy content, answering questions from cleaner, corrected version of the content, as well as answering questions from scanned images of newspaper pages. This and the fact that ChroniclingAmericaQA spans the longest time period among available QA datasets make it quite a unique and useful resource.

  • 3 authors
·
Mar 26, 2024 1

Copyright Traps for Large Language Models

Questions of fair use of copyright-protected content to train Large Language Models (LLMs) are being very actively debated. Document-level inference has been proposed as a new task: inferring from black-box access to the trained model whether a piece of content has been seen during training. SOTA methods however rely on naturally occurring memorization of (part of) the content. While very effective against models that memorize a lot, we hypothesize--and later confirm--that they will not work against models that do not naturally memorize, e.g. medium-size 1B models. We here propose to use copyright traps, the inclusion of fictitious entries in original content, to detect the use of copyrighted materials in LLMs with a focus on models where memorization does not naturally occur. We carefully design an experimental setup, randomly inserting traps into original content (books) and train a 1.3B LLM. We first validate that the use of content in our target model would be undetectable using existing methods. We then show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods. However, we show that longer sequences repeated a large number of times can be reliably detected (AUC=0.75) and used as copyright traps. We further improve these results by studying how the number of times a sequence is seen improves detectability, how sequences with higher perplexity tend to be memorized more, and how taking context into account further improves detectability.

  • 4 authors
·
Feb 14, 2024

The MASK Benchmark: Disentangling Honesty From Accuracy in AI Systems

As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, evaluations of honesty are currently highly limited, with no benchmark combining large scale and applicability to all models. Moreover, many benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. In this work, we introduce a large-scale human-collected dataset for measuring honesty directly, allowing us to disentangle accuracy from honesty for the first time. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, while most frontier LLMs obtain high scores on truthfulness benchmarks, we find a substantial propensity in frontier LLMs to lie when pressured to do so, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.

  • 16 authors
·
Mar 5

The Noisy Path from Source to Citation: Measuring How Scholars Engage with Past Research

Academic citations are widely used for evaluating research and tracing knowledge flows. Such uses typically rely on raw citation counts and neglect variability in citation types. In particular, citations can vary in their fidelity as original knowledge from cited studies may be paraphrased, summarized, or reinterpreted, possibly wrongly, leading to variation in how much information changes from cited to citing paper. In this study, we introduce a computational pipeline to quantify citation fidelity at scale. Using full texts of papers, the pipeline identifies citations in citing papers and the corresponding claims in cited papers, and applies supervised models to measure fidelity at the sentence level. Analyzing a large-scale multi-disciplinary dataset of approximately 13 million citation sentence pairs, we find that citation fidelity is higher when authors cite papers that are 1) more recent and intellectually close, 2) more accessible, and 3) the first author has a lower H-index and the author team is medium-sized. Using a quasi-experiment, we establish the "telephone effect" - when citing papers have low fidelity to the original claim, future papers that cite the citing paper and the original have lower fidelity to the original. Our work reveals systematic differences in citation fidelity, underscoring the limitations of analyses that rely on citation quantity alone and the potential for distortion of evidence.

  • 3 authors
·
Feb 27

DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis

Accurate document layout analysis is a key requirement for high-quality PDF document conversion. With the recent availability of public, large ground-truth datasets such as PubLayNet and DocBank, deep-learning models have proven to be very effective at layout detection and segmentation. While these datasets are of adequate size to train such models, they severely lack in layout variability since they are sourced from scientific article repositories such as PubMed and arXiv only. Consequently, the accuracy of the layout segmentation drops significantly when these models are applied on more challenging and diverse layouts. In this paper, we present DocLayNet, a new, publicly available, document-layout annotation dataset in COCO format. It contains 80863 manually annotated pages from diverse data sources to represent a wide variability in layouts. For each PDF page, the layout annotations provide labelled bounding-boxes with a choice of 11 distinct classes. DocLayNet also provides a subset of double- and triple-annotated pages to determine the inter-annotator agreement. In multiple experiments, we provide baseline accuracy scores (in mAP) for a set of popular object detection models. We also demonstrate that these models fall approximately 10\% behind the inter-annotator agreement. Furthermore, we provide evidence that DocLayNet is of sufficient size. Lastly, we compare models trained on PubLayNet, DocBank and DocLayNet, showing that layout predictions of the DocLayNet-trained models are more robust and thus the preferred choice for general-purpose document-layout analysis.

  • 5 authors
·
Jun 2, 2022

BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval

Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.

  • 15 authors
·
Jul 16, 2024 2

Regulatory Compliance through Doc2Doc Information Retrieval: A case study in EU/UK legislation where text similarity has limitations

Major scandals in corporate history have urged the need for regulatory compliance, where organizations need to ensure that their controls (processes) comply with relevant laws, regulations, and policies. However, keeping track of the constantly changing legislation is difficult, thus organizations are increasingly adopting Regulatory Technology (RegTech) to facilitate the process. To this end, we introduce regulatory information retrieval (REG-IR), an application of document-to-document information retrieval (DOC2DOC IR), where the query is an entire document making the task more challenging than traditional IR where the queries are short. Furthermore, we compile and release two datasets based on the relationships between EU directives and UK legislation. We experiment on these datasets using a typical two-step pipeline approach comprising a pre-fetcher and a neural re-ranker. Experimenting with various pre-fetchers from BM25 to k nearest neighbors over representations from several BERT models, we show that fine-tuning a BERT model on an in-domain classification task produces the best representations for IR. We also show that neural re-rankers under-perform due to contradicting supervision, i.e., similar query-document pairs with opposite labels. Thus, they are biased towards the pre-fetcher's score. Interestingly, applying a date filter further improves the performance, showcasing the importance of the time dimension.

  • 5 authors
·
Jan 26, 2021

More efficient manual review of automatically transcribed tabular data

Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty.

  • 5 authors
·
Jun 28, 2023

Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals

Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature.

  • 3 authors
·
Jul 12, 2021

Detect-Order-Construct: A Tree Construction based Approach for Hierarchical Document Structure Analysis

Document structure analysis (aka document layout analysis) is crucial for understanding the physical layout and logical structure of documents, with applications in information retrieval, document summarization, knowledge extraction, etc. In this paper, we concentrate on Hierarchical Document Structure Analysis (HDSA) to explore hierarchical relationships within structured documents created using authoring software employing hierarchical schemas, such as LaTeX, Microsoft Word, and HTML. To comprehensively analyze hierarchical document structures, we propose a tree construction based approach that addresses multiple subtasks concurrently, including page object detection (Detect), reading order prediction of identified objects (Order), and the construction of intended hierarchical structure (Construct). We present an effective end-to-end solution based on this framework to demonstrate its performance. To assess our approach, we develop a comprehensive benchmark called Comp-HRDoc, which evaluates the above subtasks simultaneously. Our end-to-end system achieves state-of-the-art performance on two large-scale document layout analysis datasets (PubLayNet and DocLayNet), a high-quality hierarchical document structure reconstruction dataset (HRDoc), and our Comp-HRDoc benchmark. The Comp-HRDoc benchmark will be released to facilitate further research in this field.

  • 5 authors
·
Jan 22, 2024

Éclair -- Extracting Content and Layout with Integrated Reading Order for Documents

Optical Character Recognition (OCR) technology is widely used to extract text from images of documents, facilitating efficient digitization and data retrieval. However, merely extracting text is insufficient when dealing with complex documents. Fully comprehending such documents requires an understanding of their structure -- including formatting, formulas, tables, and the reading order of multiple blocks and columns across multiple pages -- as well as semantic information for detecting elements like footnotes and image captions. This comprehensive understanding is crucial for downstream tasks such as retrieval, document question answering, and data curation for training Large Language Models (LLMs) and Vision Language Models (VLMs). To address this, we introduce \'Eclair, a general-purpose text-extraction tool specifically designed to process a wide range of document types. Given an image, \'Eclair is able to extract formatted text in reading order, along with bounding boxes and their corresponding semantic classes. To thoroughly evaluate these novel capabilities, we introduce our diverse human-annotated benchmark for document-level OCR and semantic classification. \'Eclair achieves state-of-the-art accuracy on this benchmark, outperforming other methods across key metrics. Additionally, we evaluate \'Eclair on established benchmarks, demonstrating its versatility and strength across several evaluation standards.

Authorship Attribution in the Era of LLMs: Problems, Methodologies, and Challenges

Accurate attribution of authorship is crucial for maintaining the integrity of digital content, improving forensic investigations, and mitigating the risks of misinformation and plagiarism. Addressing the imperative need for proper authorship attribution is essential to uphold the credibility and accountability of authentic authorship. The rapid advancements of Large Language Models (LLMs) have blurred the lines between human and machine authorship, posing significant challenges for traditional methods. We presents a comprehensive literature review that examines the latest research on authorship attribution in the era of LLMs. This survey systematically explores the landscape of this field by categorizing four representative problems: (1) Human-written Text Attribution; (2) LLM-generated Text Detection; (3) LLM-generated Text Attribution; and (4) Human-LLM Co-authored Text Attribution. We also discuss the challenges related to ensuring the generalization and explainability of authorship attribution methods. Generalization requires the ability to generalize across various domains, while explainability emphasizes providing transparent and understandable insights into the decisions made by these models. By evaluating the strengths and limitations of existing methods and benchmarks, we identify key open problems and future research directions in this field. This literature review serves a roadmap for researchers and practitioners interested in understanding the state of the art in this rapidly evolving field. Additional resources and a curated list of papers are available and regularly updated at https://llm-authorship.github.io

  • 3 authors
·
Aug 16, 2024 2

TrueGL: A Truthful, Reliable, and Unified Engine for Grounded Learning in Full-Stack Search

In the age of open and free information, a concerning trend of reliance on AI is emerging. However, existing AI tools struggle to evaluate the credibility of information and to justify their assessments. Hence, there is a growing need for systems that can help users evaluate the trustworthiness of online information. Although major search engines incorporate AI features, they often lack clear reliability indicators. We present TrueGL, a model that makes trustworthy search results more accessible. The model is a fine-tuned version of IBM's Granite-1B, trained on the custom dataset and integrated into a search engine with a reliability scoring system. We evaluate the system using prompt engineering and assigning each statement a continuous reliability score from 0.1 to 1, then instructing the model to return a textual explanation alongside the score. Each model's predicted scores are measured against real scores using standard evaluation metrics. TrueGL consistently outperforms other small-scale LLMs and rule-based approaches across all experiments on key evaluation metrics, including MAE, RMSE, and R2. The model's high accuracy, broad content coverage, and ease of use make trustworthy information more accessible and help reduce the spread of false or misleading content online. Our code is publicly available at https://github.com/AlgazinovAleksandr/TrueGL, and our model is publicly released at https://huggingface.co/JoydeepC/trueGL.

  • 6 authors
·
Jun 4

Structured Legal Document Generation in India: A Model-Agnostic Wrapper Approach with VidhikDastaavej

Automating legal document drafting can significantly enhance efficiency, reduce manual effort, and streamline legal workflows. While prior research has explored tasks such as judgment prediction and case summarization, the structured generation of private legal documents in the Indian legal domain remains largely unaddressed. To bridge this gap, we introduce VidhikDastaavej, a novel, anonymized dataset of private legal documents, and develop NyayaShilp, a fine-tuned legal document generation model specifically adapted to Indian legal texts. We propose a Model-Agnostic Wrapper (MAW), a two-step framework that first generates structured section titles and then iteratively produces content while leveraging retrieval-based mechanisms to ensure coherence and factual accuracy. We benchmark multiple open-source LLMs, including instruction-tuned and domain-adapted versions, alongside proprietary models for comparison. Our findings indicate that while direct fine-tuning on small datasets does not always yield improvements, our structured wrapper significantly enhances coherence, factual adherence, and overall document quality while mitigating hallucinations. To ensure real-world applicability, we developed a Human-in-the-Loop (HITL) Document Generation System, an interactive user interface that enables users to specify document types, refine section details, and generate structured legal drafts. This tool allows legal professionals and researchers to generate, validate, and refine AI-generated legal documents efficiently. Extensive evaluations, including expert assessments, confirm that our framework achieves high reliability in structured legal drafting. This research establishes a scalable and adaptable foundation for AI-assisted legal drafting in India, offering an effective approach to structured legal document generation.

  • 6 authors
·
Apr 4

TrustLLM: Trustworthiness in Large Language Models

Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.

  • 67 authors
·
Jan 10, 2024 3

Expect the Unexpected: FailSafe Long Context QA for Finance

We propose a new long-context financial benchmark, FailSafeQA, designed to test the robustness and context-awareness of LLMs against six variations in human-interface interactions in LLM-based query-answer systems within finance. We concentrate on two case studies: Query Failure and Context Failure. In the Query Failure scenario, we perturb the original query to vary in domain expertise, completeness, and linguistic accuracy. In the Context Failure case, we simulate the uploads of degraded, irrelevant, and empty documents. We employ the LLM-as-a-Judge methodology with Qwen2.5-72B-Instruct and use fine-grained rating criteria to define and calculate Robustness, Context Grounding, and Compliance scores for 24 off-the-shelf models. The results suggest that although some models excel at mitigating input perturbations, they must balance robust answering with the ability to refrain from hallucinating. Notably, Palmyra-Fin-128k-Instruct, recognized as the most compliant model, maintained strong baseline performance but encountered challenges in sustaining robust predictions in 17% of test cases. On the other hand, the most robust model, OpenAI o3-mini, fabricated information in 41% of tested cases. The results demonstrate that even high-performing models have significant room for improvement and highlight the role of FailSafeQA as a tool for developing LLMs optimized for dependability in financial applications. The dataset is available at: https://huggingface.co/datasets/Writer/FailSafeQA

  • 6 authors
·
Feb 10 4

LiveResearchBench: A Live Benchmark for User-Centric Deep Research in the Wild

Deep research -- producing comprehensive, citation-grounded reports by searching and synthesizing information from hundreds of live web sources -- marks an important frontier for agentic systems. To rigorously evaluate this ability, four principles are essential: tasks should be (1) user-centric, reflecting realistic information needs, (2) dynamic, requiring up-to-date information beyond parametric knowledge, (3) unambiguous, ensuring consistent interpretation across users, and (4) multi-faceted and search-intensive, requiring search over numerous web sources and in-depth analysis. Existing benchmarks fall short of these principles, often focusing on narrow domains or posing ambiguous questions that hinder fair comparison. Guided by these principles, we introduce LiveResearchBench, a benchmark of 100 expert-curated tasks spanning daily life, enterprise, and academia, each requiring extensive, dynamic, real-time web search and synthesis. Built with over 1,500 hours of human labor, LiveResearchBench provides a rigorous basis for systematic evaluation. To evaluate citation-grounded long-form reports, we introduce DeepEval, a comprehensive suite covering both content- and report-level quality, including coverage, presentation, citation accuracy and association, consistency and depth of analysis. DeepEval integrates four complementary evaluation protocols, each designed to ensure stable assessment and high agreement with human judgments. Using LiveResearchBench and DeepEval, we conduct a comprehensive evaluation of 17 frontier deep research systems, including single-agent web search, single-agent deep research, and multi-agent systems. Our analysis reveals current strengths, recurring failure modes, and key system components needed to advance reliable, insightful deep research.

Salesforce Salesforce
·
Oct 15 3

POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion

High-quality labeled data is essential for training accurate document conversion models, particularly in domains with complex formats such as tables, formulas, and multi-column text. However, manual annotation is both costly and time-consuming, while automatic labeling using existing models often lacks accuracy in handling such challenging scenarios. Consequently, training student models by distilling outputs from teacher models can significantly limit their performance in real-world applications. In this paper, we propose a fully automated, distillation-free framework comprising two stages for constructing high-quality document extraction datasets and models capable of handling diverse document formats and layouts. In the first stage, we introduce a method for generating large-scale, diverse synthetic data, which enables a model to extract key elements in a unified format with strong initial performance. In the second stage, we present a self-improvement approach that further adapts the model, initially trained on synthetic data, to real-world documents. Specifically, we first use the fine-tuned model to annotate real documents, then apply a suite of filtering strategies to verify annotation quality, and finally retrain the model on the verified dataset. By iteratively repeating this process, we progressively enhance both the model's conversion capabilities and the quality of the generated data. We train a public POINTS-1.5 model to obtain POINTS-Reader, which surpasses many existing public and proprietary models of comparable or larger size. Our model is available at https://github.com/Tencent/POINTS-Reader.

Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization

Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores.

  • 5 authors
·
Jun 20, 2013

From Codicology to Code: A Comparative Study of Transformer and YOLO-based Detectors for Layout Analysis in Historical Documents

Robust Document Layout Analysis (DLA) is critical for the automated processing and understanding of historical documents with complex page organizations. This paper benchmarks five state-of-the-art object detection architectures on three annotated datasets representing a spectrum of codicological complexity: The e-NDP, a corpus of Parisian medieval registers (1326-1504); CATMuS, a diverse multiclass dataset derived from various medieval and modern sources (ca.12th-17th centuries) and HORAE, a corpus of decorated books of hours (ca.13th-16th centuries). We evaluate two Transformer-based models (Co-DETR, Grounding DINO) against three YOLO variants (AABB, OBB, and YOLO-World). Our findings reveal significant performance variations dependent on model architecture, data set characteristics, and bounding box representation. In the e-NDP dataset, Co-DETR achieves state-of-the-art results (0.752 mAP@.50:.95), closely followed by YOLOv11X-OBB (0.721). Conversely, on the more complex CATMuS and HORAE datasets, the CNN-based YOLOv11x-OBB significantly outperforms all other models (0.564 and 0.568, respectively). This study unequivocally demonstrates that using Oriented Bounding Boxes (OBB) is not a minor refinement but a fundamental requirement for accurately modeling the non-Cartesian nature of historical manuscripts. We conclude that a key trade-off exists between the global context awareness of Transformers, ideal for structured layouts, and the superior generalization of CNN-OBB models for visually diverse and complex documents.

  • 1 authors
·
Jun 25

MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream

A lot of research has been devoted to identity documents analysis and recognition on mobile devices. However, no publicly available datasets designed for this particular problem currently exist. There are a few datasets which are useful for associated subtasks but in order to facilitate a more comprehensive scientific and technical approach to identity document recognition more specialized datasets are required. In this paper we present a Mobile Identity Document Video dataset (MIDV-500) consisting of 500 video clips for 50 different identity document types with ground truth which allows to perform research in a wide scope of document analysis problems. The paper presents characteristics of the dataset and evaluation results for existing methods of face detection, text line recognition, and document fields data extraction. Since an important feature of identity documents is their sensitiveness as they contain personal data, all source document images used in MIDV-500 are either in public domain or distributed under public copyright licenses. The main goal of this paper is to present a dataset. However, in addition and as a baseline, we present evaluation results for existing methods for face detection, text line recognition, and document data extraction, using the presented dataset. (The dataset is available for download at ftp://smartengines.com/midv-500/.)

  • 4 authors
·
Jul 16, 2018

Copyright Protection for Large Language Models: A Survey of Methods, Challenges, and Trends

Copyright protection for large language models is of critical importance, given their substantial development costs, proprietary value, and potential for misuse. Existing surveys have predominantly focused on techniques for tracing LLM-generated content-namely, text watermarking-while a systematic exploration of methods for protecting the models themselves (i.e., model watermarking and model fingerprinting) remains absent. Moreover, the relationships and distinctions among text watermarking, model watermarking, and model fingerprinting have not been comprehensively clarified. This work presents a comprehensive survey of the current state of LLM copyright protection technologies, with a focus on model fingerprinting, covering the following aspects: (1) clarifying the conceptual connection from text watermarking to model watermarking and fingerprinting, and adopting a unified terminology that incorporates model watermarking into the broader fingerprinting framework; (2) providing an overview and comparison of diverse text watermarking techniques, highlighting cases where such methods can function as model fingerprinting; (3) systematically categorizing and comparing existing model fingerprinting approaches for LLM copyright protection; (4) presenting, for the first time, techniques for fingerprint transfer and fingerprint removal; (5) summarizing evaluation metrics for model fingerprints, including effectiveness, harmlessness, robustness, stealthiness, and reliability; and (6) discussing open challenges and future research directions. This survey aims to offer researchers a thorough understanding of both text watermarking and model fingerprinting technologies in the era of LLMs, thereby fostering further advances in protecting their intellectual property.

  • 11 authors
·
Aug 15 2

American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers

Existing full text datasets of U.S. public domain newspapers do not recognize the often complex layouts of newspaper scans, and as a result the digitized content scrambles texts from articles, headlines, captions, advertisements, and other layout regions. OCR quality can also be low. This study develops a novel, deep learning pipeline for extracting full article texts from newspaper images and applies it to the nearly 20 million scans in Library of Congress's public domain Chronicling America collection. The pipeline includes layout detection, legibility classification, custom OCR, and association of article texts spanning multiple bounding boxes. To achieve high scalability, it is built with efficient architectures designed for mobile phones. The resulting American Stories dataset provides high quality data that could be used for pre-training a large language model to achieve better understanding of historical English and historical world knowledge. The dataset could also be added to the external database of a retrieval-augmented language model to make historical information - ranging from interpretations of political events to minutiae about the lives of people's ancestors - more widely accessible. Furthermore, structured article texts facilitate using transformer-based methods for popular social science applications like topic classification, detection of reproduced content, and news story clustering. Finally, American Stories provides a massive silver quality dataset for innovating multimodal layout analysis models and other multimodal applications.

  • 10 authors
·
Aug 23, 2023

Siamese based Neural Network for Offline Writer Identification on word level data

Handwriting recognition is one of the desirable attributes of document comprehension and analysis. It is concerned with the documents writing style and characteristics that distinguish the authors. The diversity of text images, notably in images with varying handwriting, makes the process of learning good features difficult in cases where little data is available. In this paper, we propose a novel scheme to identify the author of a document based on the input word image. Our method is text independent and does not impose any constraint on the size of the input image under examination. To begin with, we detect crucial components in handwriting and extract regions surrounding them using Scale Invariant Feature Transform (SIFT). These patches are designed to capture individual writing features (including allographs, characters, or combinations of characters) that are likely to be unique for an individual writer. These features are then passed through a deep Convolutional Neural Network (CNN) in which the weights are learned by applying the concept of Similarity learning using Siamese network. Siamese network enhances the discrimination power of CNN by mapping similarity between different pairs of input image. Features learned at different scales of the extracted SIFT key-points are encoded using Sparse PCA, each components of the Sparse PCA is assigned a saliency score signifying its level of significance in discriminating different writers effectively. Finally, the weighted Sparse PCA corresponding to each SIFT key-points is combined to arrive at a final classification score for each writer. The proposed algorithm was evaluated on two publicly available databases (namely IAM and CVL) and is able to achieve promising result, when compared with other deep learning based algorithm.

  • 2 authors
·
Nov 17, 2022

CommonForms: A Large, Diverse Dataset for Form Field Detection

This paper introduces CommonForms, a web-scale dataset for form field detection. It casts the problem of form field detection as object detection: given an image of a page, predict the location and type (Text Input, Choice Button, Signature) of form fields. The dataset is constructed by filtering Common Crawl to find PDFs that have fillable elements. Starting with 8 million documents, the filtering process is used to arrive at a final dataset of roughly 55k documents that have over 450k pages. Analysis shows that the dataset contains a diverse mixture of languages and domains; one third of the pages are non-English, and among the 14 classified domains, no domain makes up more than 25% of the dataset. In addition, this paper presents a family of form field detectors, FFDNet-Small and FFDNet-Large, which attain a very high average precision on the CommonForms test set. Each model cost less than $500 to train. Ablation results show that high-resolution inputs are crucial for high-quality form field detection, and that the cleaning process improves data efficiency over using all PDFs that have fillable fields in Common Crawl. A qualitative analysis shows that they outperform a popular, commercially available PDF reader that can prepare forms. Unlike the most popular commercially available solutions, FFDNet can predict checkboxes in addition to text and signature fields. This is, to our knowledge, the first large scale dataset released for form field detection, as well as the first open source models. The dataset, models, and code will be released at https://github.com/jbarrow/commonforms

  • 1 authors
·
Sep 19 2

UniHDSA: A Unified Relation Prediction Approach for Hierarchical Document Structure Analysis

Document structure analysis, aka document layout analysis, is crucial for understanding both the physical layout and logical structure of documents, serving information retrieval, document summarization, knowledge extraction, etc. Hierarchical Document Structure Analysis (HDSA) specifically aims to restore the hierarchical structure of documents created using authoring software with hierarchical schemas. Previous research has primarily followed two approaches: one focuses on tackling specific subtasks of HDSA in isolation, such as table detection or reading order prediction, while the other adopts a unified framework that uses multiple branches or modules, each designed to address a distinct task. In this work, we propose a unified relation prediction approach for HDSA, called UniHDSA, which treats various HDSA sub-tasks as relation prediction problems and consolidates relation prediction labels into a unified label space. This allows a single relation prediction module to handle multiple tasks simultaneously, whether at a page-level or document-level structure analysis. To validate the effectiveness of UniHDSA, we develop a multimodal end-to-end system based on Transformer architectures. Extensive experimental results demonstrate that our approach achieves state-of-the-art performance on a hierarchical document structure analysis benchmark, Comp-HRDoc, and competitive results on a large-scale document layout analysis dataset, DocLayNet, effectively illustrating the superiority of our method across all sub-tasks. The Comp-HRDoc benchmark and UniHDSA's configurations are publicly available at https://github.com/microsoft/CompHRDoc.

  • 3 authors
·
Mar 20 2

SDS KoPub VDR: A Benchmark Dataset for Visual Document Retrieval in Korean Public Documents

Existing benchmarks for visual document retrieval (VDR) largely overlook non-English languages and the structural complexity of official publications. To address this critical gap, we introduce SDS KoPub VDR, the first large-scale, publicly available benchmark for retrieving and understanding Korean public documents. The benchmark is built upon a corpus of 361 real-world documents (40,781 pages), including 256 files under the KOGL Type 1 license and 105 from official legal portals, capturing complex visual elements like tables, charts, and multi-column layouts. To establish a challenging and reliable evaluation set, we constructed 600 query-page-answer triples. These were initially generated using multimodal models (e.g., GPT-4o) and subsequently underwent a rigorous human verification and refinement process to ensure factual accuracy and contextual relevance. The queries span six major public domains and are systematically categorized by the reasoning modality required: text-based, visual-based (e.g., chart interpretation), and cross-modal. We evaluate SDS KoPub VDR on two complementary tasks that reflect distinct retrieval paradigms: (1) text-only retrieval, which measures a model's ability to locate relevant document pages based solely on textual signals, and (2) multimodal retrieval, which assesses retrieval performance when visual features (e.g., tables, charts, and layouts) are jointly leveraged alongside text. This dual-task evaluation reveals substantial performance gaps, particularly in multimodal scenarios requiring cross-modal reasoning, even for state-of-the-art models. As a foundational resource, SDS KoPub VDR not only enables rigorous and fine-grained evaluation across textual and multimodal retrieval tasks but also provides a clear roadmap for advancing multimodal AI in complex, real-world document intelligence.

  • 6 authors
·
Nov 6

Alignment for Honesty

Recent research has made significant strides in applying alignment techniques to enhance the helpfulness and harmlessness of large language models (LLMs) in accordance with human intentions. In this paper, we argue for the importance of alignment for honesty, ensuring that LLMs proactively refuse to answer questions when they lack knowledge, while still not being overly conservative. However, a pivotal aspect of alignment for honesty involves discerning the limits of an LLM's knowledge, which is far from straightforward. This challenge demands comprehensive solutions in terms of metric development, benchmark creation, and training methodologies. In this paper, we address these challenges by first establishing a precise problem definition and defining ``honesty'' inspired by the Analects of Confucius. This serves as a cornerstone for developing metrics that effectively measure an LLM's honesty by quantifying its progress post-alignment. Furthermore, we introduce a flexible training framework which is further instantiated by several efficient fine-tuning techniques that emphasize honesty without sacrificing performance on other tasks. Our extensive experiments reveal that these aligned models show a marked increase in honesty, as indicated by our proposed metrics. We open-source a wealth of resources to facilitate future research at https://github.com/GAIR-NLP/alignment-for-honesty, including honesty-aligned models, training and evaluation datasets for honesty alignment, concept glossary, as well as all relevant source code.

  • 5 authors
·
Dec 12, 2023

Is Your Paper Being Reviewed by an LLM? Benchmarking AI Text Detection in Peer Review

Peer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in large language models (LLMs), a new risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. However, there is a lack of existing resources for benchmarking the detectability of AI text in the domain of peer review. To address this deficiency, we introduce a comprehensive dataset containing a total of 788,984 AI-written peer reviews paired with corresponding human reviews, covering 8 years of papers submitted to each of two leading AI research conferences (ICLR and NeurIPS). We use this new resource to evaluate the ability of 18 existing AI text detection algorithms to distinguish between peer reviews fully written by humans and different state-of-the-art LLMs. Additionally, we explore a context-aware detection method called Anchor, which leverages manuscript content to detect AI-generated reviews, and analyze the sensitivity of detection models to LLM-assisted editing of human-written text. Our work reveals the difficulty of identifying AI-generated text at the individual peer review level, highlighting the urgent need for new tools and methods to detect this unethical use of generative AI. Our dataset is publicly available at: https://huggingface.co/datasets/IntelLabs/AI-Peer-Review-Detection-Benchmark.

  • 5 authors
·
Feb 26

The Data Provenance Initiative: A Large Scale Audit of Dataset Licensing & Attribution in AI

The race to train language models on vast, diverse, and inconsistently documented datasets has raised pressing concerns about the legal and ethical risks for practitioners. To remedy these practices threatening data transparency and understanding, we convene a multi-disciplinary effort between legal and machine learning experts to systematically audit and trace 1800+ text datasets. We develop tools and standards to trace the lineage of these datasets, from their source, creators, series of license conditions, properties, and subsequent use. Our landscape analysis highlights the sharp divides in composition and focus of commercially open vs closed datasets, with closed datasets monopolizing important categories: lower resource languages, more creative tasks, richer topic variety, newer and more synthetic training data. This points to a deepening divide in the types of data that are made available under different license conditions, and heightened implications for jurisdictional legal interpretations of copyright and fair use. We also observe frequent miscategorization of licenses on widely used dataset hosting sites, with license omission of 72%+ and error rates of 50%+. This points to a crisis in misattribution and informed use of the most popular datasets driving many recent breakthroughs. As a contribution to ongoing improvements in dataset transparency and responsible use, we release our entire audit, with an interactive UI, the Data Provenance Explorer, which allows practitioners to trace and filter on data provenance for the most popular open source finetuning data collections: www.dataprovenance.org.

  • 18 authors
·
Oct 25, 2023 2

Privacy-Preserving Biometric Verification with Handwritten Random Digit String

Handwriting verification has stood as a steadfast identity authentication method for decades. However, this technique risks potential privacy breaches due to the inclusion of personal information in handwritten biometrics such as signatures. To address this concern, we propose using the Random Digit String (RDS) for privacy-preserving handwriting verification. This approach allows users to authenticate themselves by writing an arbitrary digit sequence, effectively ensuring privacy protection. To evaluate the effectiveness of RDS, we construct a new HRDS4BV dataset composed of online naturally handwritten RDS. Unlike conventional handwriting, RDS encompasses unconstrained and variable content, posing significant challenges for modeling consistent personal writing style. To surmount this, we propose the Pattern Attentive VErification Network (PAVENet), along with a Discriminative Pattern Mining (DPM) module. DPM adaptively enhances the recognition of consistent and discriminative writing patterns, thus refining handwriting style representation. Through comprehensive evaluations, we scrutinize the applicability of online RDS verification and showcase a pronounced outperformance of our model over existing methods. Furthermore, we discover a noteworthy forgery phenomenon that deviates from prior findings and discuss its positive impact in countering malicious impostor attacks. Substantially, our work underscores the feasibility of privacy-preserving biometric verification and propels the prospects of its broader acceptance and application.

  • 5 authors
·
Mar 16

Specialized Document Embeddings for Aspect-based Similarity of Research Papers

Document embeddings and similarity measures underpin content-based recommender systems, whereby a document is commonly represented as a single generic embedding. However, similarity computed on single vector representations provides only one perspective on document similarity that ignores which aspects make two documents alike. To address this limitation, aspect-based similarity measures have been developed using document segmentation or pairwise multi-class document classification. While segmentation harms the document coherence, the pairwise classification approach scales poorly to large scale corpora. In this paper, we treat aspect-based similarity as a classical vector similarity problem in aspect-specific embedding spaces. We represent a document not as a single generic embedding but as multiple specialized embeddings. Our approach avoids document segmentation and scales linearly w.r.t.the corpus size. In an empirical study, we use the Papers with Code corpus containing 157,606 research papers and consider the task, method, and dataset of the respective research papers as their aspects. We compare and analyze three generic document embeddings, six specialized document embeddings and a pairwise classification baseline in the context of research paper recommendations. As generic document embeddings, we consider FastText, SciBERT, and SPECTER. To compute the specialized document embeddings, we compare three alternative methods inspired by retrofitting, fine-tuning, and Siamese networks. In our experiments, Siamese SciBERT achieved the highest scores. Additional analyses indicate an implicit bias of the generic document embeddings towards the dataset aspect and against the method aspect of each research paper. Our approach of aspect-based document embeddings mitigates potential risks arising from implicit biases by making them explicit.

  • 5 authors
·
Mar 28, 2022

Neural models for Factual Inconsistency Classification with Explanations

Factual consistency is one of the most important requirements when editing high quality documents. It is extremely important for automatic text generation systems like summarization, question answering, dialog modeling, and language modeling. Still, automated factual inconsistency detection is rather under-studied. Existing work has focused on (a) finding fake news keeping a knowledge base in context, or (b) detecting broad contradiction (as part of natural language inference literature). However, there has been no work on detecting and explaining types of factual inconsistencies in text, without any knowledge base in context. In this paper, we leverage existing work in linguistics to formally define five types of factual inconsistencies. Based on this categorization, we contribute a novel dataset, FICLE (Factual Inconsistency CLassification with Explanation), with ~8K samples where each sample consists of two sentences (claim and context) annotated with type and span of inconsistency. When the inconsistency relates to an entity type, it is labeled as well at two levels (coarse and fine-grained). Further, we leverage this dataset to train a pipeline of four neural models to predict inconsistency type with explanations, given a (claim, context) sentence pair. Explanations include inconsistent claim fact triple, inconsistent context span, inconsistent claim component, coarse and fine-grained inconsistent entity types. The proposed system first predicts inconsistent spans from claim and context; and then uses them to predict inconsistency types and inconsistent entity types (when inconsistency is due to entities). We experiment with multiple Transformer-based natural language classification as well as generative models, and find that DeBERTa performs the best. Our proposed methods provide a weighted F1 of ~87% for inconsistency type classification across the five classes.

  • 7 authors
·
Jun 15, 2023

MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents

Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.

  • 6 authors
·
Jan 15 2

DOCBENCH: A Benchmark for Evaluating LLM-based Document Reading Systems

Recently, there has been a growing interest among large language model (LLM) developers in LLM-based document reading systems, which enable users to upload their own documents and pose questions related to the document contents, going beyond simple reading comprehension tasks. Consequently, these systems have been carefully designed to tackle challenges such as file parsing, metadata extraction, multi-modal information understanding and long-context reading. However, no current benchmark exists to evaluate their performance in such scenarios, where a raw file and questions are provided as input, and a corresponding response is expected as output. In this paper, we introduce DocBench, a new benchmark designed to evaluate LLM-based document reading systems. Our benchmark involves a meticulously crafted process, including the recruitment of human annotators and the generation of synthetic questions. It includes 229 real documents and 1,102 questions, spanning across five different domains and four major types of questions. We evaluate both proprietary LLM-based systems accessible via web interfaces or APIs, and a parse-then-read pipeline employing open-source LLMs. Our evaluations reveal noticeable gaps between existing LLM-based document reading systems and human performance, underscoring the challenges of developing proficient systems. To summarize, DocBench aims to establish a standardized benchmark for evaluating LLM-based document reading systems under diverse real-world scenarios, thereby guiding future advancements in this research area.

  • 8 authors
·
Jul 15, 2024

How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods

Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.

  • 3 authors
·
Aug 18, 2023

Landmarks and Regions: A Robust Approach to Data Extraction

We propose a new approach to extracting data items or field values from semi-structured documents. Examples of such problems include extracting passenger name, departure time and departure airport from a travel itinerary, or extracting price of an item from a purchase receipt. Traditional approaches to data extraction use machine learning or program synthesis to process the whole document to extract the desired fields. Such approaches are not robust to format changes in the document, and the extraction process typically fails even if changes are made to parts of the document that are unrelated to the desired fields of interest. We propose a new approach to data extraction based on the concepts of landmarks and regions. Humans routinely use landmarks in manual processing of documents to zoom in and focus their attention on small regions of interest in the document. Inspired by this human intuition, we use the notion of landmarks in program synthesis to automatically synthesize extraction programs that first extract a small region of interest, and then automatically extract the desired value from the region in a subsequent step. We have implemented our landmark-based extraction approach in a tool LRSyn, and show extensive evaluation on documents in HTML as well as scanned images of invoices and receipts. Our results show that our approach is robust to various types of format changes that routinely happen in real-world settings.

  • 7 authors
·
Apr 11, 2022

Can Large Multimodal Models Actively Recognize Faulty Inputs? A Systematic Evaluation Framework of Their Input Scrutiny Ability

Large Multimodal Models (LMMs) have witnessed remarkable growth, showcasing formidable capabilities in handling intricate multimodal tasks with exceptional performance. Recent research has underscored the inclination of large language models to passively accept defective inputs, often resulting in futile reasoning on invalid prompts. However, the same critical question of whether LMMs can actively detect and scrutinize erroneous inputs still remains unexplored. To address this gap, we introduce the Input Scrutiny Ability Evaluation Framework (ISEval), which encompasses seven categories of flawed premises and three evaluation metrics. Our extensive evaluation of ten advanced LMMs has identified key findings. Most models struggle to actively detect flawed textual premises without guidance, which reflects a strong reliance on explicit prompts for premise error identification. Error type affects performance: models excel at identifying logical fallacies but struggle with surface-level linguistic errors and certain conditional flaws. Modality trust varies-Gemini 2.5 pro and Claude Sonnet 4 balance visual and textual info, while aya-vision-8b over-rely on text in conflicts. These insights underscore the urgent need to enhance LMMs' proactive verification of input validity and shed novel insights into mitigating the problem. The code is available at https://github.com/MLGroupJLU/LMM_ISEval.

Red teaming ChatGPT via Jailbreaking: Bias, Robustness, Reliability and Toxicity

Recent breakthroughs in natural language processing (NLP) have permitted the synthesis and comprehension of coherent text in an open-ended way, therefore translating the theoretical algorithms into practical applications. The large language models (LLMs) have significantly impacted businesses such as report summarization software and copywriters. Observations indicate, however, that LLMs may exhibit social prejudice and toxicity, posing ethical and societal dangers of consequences resulting from irresponsibility. Large-scale benchmarks for accountable LLMs should consequently be developed. Although several empirical investigations reveal the existence of a few ethical difficulties in advanced LLMs, there is little systematic examination and user study of the risks and harmful behaviors of current LLM usage. To further educate future efforts on constructing ethical LLMs responsibly, we perform a qualitative research method called ``red teaming'' on OpenAI's ChatGPTIn this paper, ChatGPT refers to the version released on Dec 15th. to better understand the practical features of ethical dangers in recent LLMs. We analyze ChatGPT comprehensively from four perspectives: 1) Bias 2) Reliability 3) Robustness 4) Toxicity. In accordance with our stated viewpoints, we empirically benchmark ChatGPT on multiple sample datasets. We find that a significant number of ethical risks cannot be addressed by existing benchmarks, and hence illustrate them via additional case studies. In addition, we examine the implications of our findings on AI ethics and harmal behaviors of ChatGPT, as well as future problems and practical design considerations for responsible LLMs. We believe that our findings may give light on future efforts to determine and mitigate the ethical hazards posed by machines in LLM applications.

  • 4 authors
·
Jan 30, 2023

The Best of Both Worlds: Toward an Honest and Helpful Large Language Model

Large Language Models (LLMs) have achieved remarkable success across various industries due to their exceptional generative capabilities. However, for safe and effective real-world deployments, ensuring honesty and helpfulness is critical. This paper addresses the question: Can we prioritize the helpfulness of LLMs while preserving their honesty? To begin with, we establish exhaustive principles aimed at guaranteeing the honesty of LLM. Additionally, we introduce a novel dataset, referred to as HoneSet, comprising 930 queries spanning six categories meticulously crafted to assess an LLM's capacity for maintaining honesty. Subsequently, we present two approaches to augmenting honesty and helpfulness in LLMs: a training-free enhancement and a fine-tuning-based improvement. The training-free approach, which is based on curiosity-driven prompting, empowers LLMs to articulate internal confusion and uncertainty regarding queries, thereby optimizing their responses. Conversely, the fine-tuning-based method employs a two-stage process inspired by curriculum learning: initially instructing LLMs to discern between honest and dishonest responses, then refining their training to enhance helpfulness. Experiments conducted on nine prominent LLMs demonstrate a significant improvement in alignment with honesty across all models through the implementation of our proposed enhancements. Particularly noteworthy is the 65.3% enhancement observed in Llama3-8b and the remarkable 124.7% improvement in Mistral-7b, as measured by the H^{2} (honest and helpful) assessment. We believe that our work can pave the way for developing more trustworthy LLMs for real-world applications.

  • 9 authors
·
Jun 1, 2024

Neural Rankers for Effective Screening Prioritisation in Medical Systematic Review Literature Search

Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.

  • 4 authors
·
Dec 18, 2022