new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 11

Consiglieres in the Shadow: Understanding the Use of Uncensored Large Language Models in Cybercrimes

The advancement of AI technologies, particularly Large Language Models (LLMs), has transformed computing while introducing new security and privacy risks. Prior research shows that cybercriminals are increasingly leveraging uncensored LLMs (ULLMs) as backends for malicious services. Understanding these ULLMs has been hindered by the challenge of identifying them among the vast number of open-source LLMs hosted on platforms like Hugging Face. In this paper, we present the first systematic study of ULLMs, overcoming this challenge by modeling relationships among open-source LLMs and between them and related data, such as fine-tuning, merging, compressing models, and using or generating datasets with harmful content. Representing these connections as a knowledge graph, we applied graph-based deep learning to discover over 11,000 ULLMs from a small set of labeled examples and uncensored datasets. A closer analysis of these ULLMs reveals their alarming scale and usage. Some have been downloaded over a million times, with one over 19 million installs. These models -- created through fine-tuning, merging, or compression of other models -- are capable of generating harmful content, including hate speech, violence, erotic material, and malicious code. Evidence shows their integration into hundreds of malicious applications offering services like erotic role-play, child pornography, malicious code generation, and more. In addition, underground forums reveal criminals sharing techniques and scripts to build cheap alternatives to commercial malicious LLMs. These findings highlight the widespread abuse of LLM technology and the urgent need for effective countermeasures against this growing threat.

  • 4 authors
·
Aug 18

Leveraging Self-Supervised Learning for Scene Classification in Child Sexual Abuse Imagery

Crime in the 21st century is split into a virtual and real world. However, the former has become a global menace to people's well-being and security in the latter. The challenges it presents must be faced with unified global cooperation, and we must rely more than ever on automated yet trustworthy tools to combat the ever-growing nature of online offenses. Over 10 million child sexual abuse reports are submitted to the US National Center for Missing \& Exploited Children every year, and over 80% originate from online sources. Therefore, investigation centers cannot manually process and correctly investigate all imagery. In light of that, reliable automated tools that can securely and efficiently deal with this data are paramount. In this sense, the scene classification task looks for contextual cues in the environment, being able to group and classify child sexual abuse data without requiring to be trained on sensitive material. The scarcity and limitations of working with child sexual abuse images lead to self-supervised learning, a machine-learning methodology that leverages unlabeled data to produce powerful representations that can be more easily transferred to downstream tasks. This work shows that self-supervised deep learning models pre-trained on scene-centric data can reach 71.6% balanced accuracy on our indoor scene classification task and, on average, 2.2 percentage points better performance than a fully supervised version. We cooperate with Brazilian Federal Police experts to evaluate our indoor classification model on actual child abuse material. The results demonstrate a notable discrepancy between the features observed in widely used scene datasets and those depicted on sensitive materials.

  • 5 authors
·
Mar 2, 2024

Advancing Content Moderation: Evaluating Large Language Models for Detecting Sensitive Content Across Text, Images, and Videos

The widespread dissemination of hate speech, harassment, harmful and sexual content, and violence across websites and media platforms presents substantial challenges and provokes widespread concern among different sectors of society. Governments, educators, and parents are often at odds with media platforms about how to regulate, control, and limit the spread of such content. Technologies for detecting and censoring the media contents are a key solution to addressing these challenges. Techniques from natural language processing and computer vision have been used widely to automatically identify and filter out sensitive content such as offensive languages, violence, nudity, and addiction in both text, images, and videos, enabling platforms to enforce content policies at scale. However, existing methods still have limitations in achieving high detection accuracy with fewer false positives and false negatives. Therefore, more sophisticated algorithms for understanding the context of both text and image may open rooms for improvement in content censorship to build a more efficient censorship system. In this paper, we evaluate existing LLM-based content moderation solutions such as OpenAI moderation model and Llama-Guard3 and study their capabilities to detect sensitive contents. Additionally, we explore recent LLMs such as GPT, Gemini, and Llama in identifying inappropriate contents across media outlets. Various textual and visual datasets like X tweets, Amazon reviews, news articles, human photos, cartoons, sketches, and violence videos have been utilized for evaluation and comparison. The results demonstrate that LLMs outperform traditional techniques by achieving higher accuracy and lower false positive and false negative rates. This highlights the potential to integrate LLMs into websites, social media platforms, and video-sharing services for regulatory and content moderation purposes.

  • 4 authors
·
Nov 26, 2024

Towards Understanding Unsafe Video Generation

Video generation models (VGMs) have demonstrated the capability to synthesize high-quality output. It is important to understand their potential to produce unsafe content, such as violent or terrifying videos. In this work, we provide a comprehensive understanding of unsafe video generation. First, to confirm the possibility that these models could indeed generate unsafe videos, we choose unsafe content generation prompts collected from 4chan and Lexica, and three open-source SOTA VGMs to generate unsafe videos. After filtering out duplicates and poorly generated content, we created an initial set of 2112 unsafe videos from an original pool of 5607 videos. Through clustering and thematic coding analysis of these generated videos, we identify 5 unsafe video categories: Distorted/Weird, Terrifying, Pornographic, Violent/Bloody, and Political. With IRB approval, we then recruit online participants to help label the generated videos. Based on the annotations submitted by 403 participants, we identified 937 unsafe videos from the initial video set. With the labeled information and the corresponding prompts, we created the first dataset of unsafe videos generated by VGMs. We then study possible defense mechanisms to prevent the generation of unsafe videos. Existing defense methods in image generation focus on filtering either input prompt or output results. We propose a new approach called Latent Variable Defense (LVD), which works within the model's internal sampling process. LVD can achieve 0.90 defense accuracy while reducing time and computing resources by 10x when sampling a large number of unsafe prompts.

  • 4 authors
·
Jul 17, 2024 2

ChildDiffusion: Unlocking the Potential of Generative AI and Controllable Augmentations for Child Facial Data using Stable Diffusion and Large Language Models

In this research work we have proposed high-level ChildDiffusion framework capable of generating photorealistic child facial samples and further embedding several intelligent augmentations on child facial data using short text prompts, detailed textual guidance from LLMs, and further image to image transformation using text guidance control conditioning thus providing an opportunity to curate fully synthetic large scale child datasets. The framework is validated by rendering high-quality child faces representing ethnicity data, micro expressions, face pose variations, eye blinking effects, facial accessories, different hair colours and styles, aging, multiple and different child gender subjects in a single frame. Addressing privacy concerns regarding child data acquisition requires a comprehensive approach that involves legal, ethical, and technological considerations. Keeping this in view this framework can be adapted to synthesise child facial data which can be effectively used for numerous downstream machine learning tasks. The proposed method circumvents common issues encountered in generative AI tools, such as temporal inconsistency and limited control over the rendered outputs. As an exemplary use case we have open-sourced child ethnicity data consisting of 2.5k child facial samples of five different classes which includes African, Asian, White, South Asian/ Indian, and Hispanic races by deploying the model in production inference phase. The rendered data undergoes rigorous qualitative as well as quantitative tests to cross validate its efficacy and further fine-tuning Yolo architecture for detecting and classifying child ethnicity as an exemplary downstream machine learning task.

  • 3 authors
·
Jun 17, 2024

Violence Detection in Videos

In the recent years, there has been a tremendous increase in the amount of video content uploaded to social networking and video sharing websites like Facebook and Youtube. As of result of this, the risk of children getting exposed to adult and violent content on the web also increased. To address this issue, an approach to automatically detect violent content in videos is proposed in this work. Here, a novel attempt is made also to detect the category of violence present in a video. A system which can automatically detect violence from both Hollywood movies and videos from the web is extremely useful not only in parental control but also for applications related to movie ratings, video surveillance, genre classification and so on. Here, both audio and visual features are used to detect violence. MFCC features are used as audio cues. Blood, Motion, and SentiBank features are used as visual cues. Binary SVM classifiers are trained on each of these features to detect violence. Late fusion using a weighted sum of classification scores is performed to get final classification scores for each of the violence class target by the system. To determine optimal weights for each of the violence classes an approach based on grid search is employed. Publicly available datasets, mainly Violent Scene Detection (VSD), are used for classifier training, weight calculation, and testing. The performance of the system is evaluated on two classification tasks, Multi-Class classification, and Binary Classification. The results obtained for Binary Classification are better than the baseline results from MediaEval-2014.

  • 3 authors
·
Sep 18, 2021