- A Dataset for Pharmacovigilance in German, French, and Japanese: Annotating Adverse Drug Reactions across Languages User-generated data sources have gained significance in uncovering Adverse Drug Reactions (ADRs), with an increasing number of discussions occurring in the digital world. However, the existing clinical corpora predominantly revolve around scientific articles in English. This work presents a multilingual corpus of texts concerning ADRs gathered from diverse sources, including patient fora, social media, and clinical reports in German, French, and Japanese. Our corpus contains annotations covering 12 entity types, four attribute types, and 13 relation types. It contributes to the development of real-world multilingual language models for healthcare. We provide statistics to highlight certain challenges associated with the corpus and conduct preliminary experiments resulting in strong baselines for extracting entities and relations between these entities, both within and across languages. 14 authors · Mar 27, 2024
- PHEE: A Dataset for Pharmacovigilance Event Extraction from Text The primary goal of drug safety researchers and regulators is to promptly identify adverse drug reactions. Doing so may in turn prevent or reduce the harm to patients and ultimately improve public health. Evaluating and monitoring drug safety (i.e., pharmacovigilance) involves analyzing an ever growing collection of spontaneous reports from health professionals, physicians, and pharmacists, and information voluntarily submitted by patients. In this scenario, facilitating analysis of such reports via automation has the potential to rapidly identify safety signals. Unfortunately, public resources for developing natural language models for this task are scant. We present PHEE, a novel dataset for pharmacovigilance comprising over 5000 annotated events from medical case reports and biomedical literature, making it the largest such public dataset to date. We describe the hierarchical event schema designed to provide coarse and fine-grained information about patients' demographics, treatments and (side) effects. Along with the discussion of the dataset, we present a thorough experimental evaluation of current state-of-the-art approaches for biomedical event extraction, point out their limitations, and highlight open challenges to foster future research in this area. 8 authors · Oct 22, 2022
- MALADE: Orchestration of LLM-powered Agents with Retrieval Augmented Generation for Pharmacovigilance In the era of Large Language Models (LLMs), given their remarkable text understanding and generation abilities, there is an unprecedented opportunity to develop new, LLM-based methods for trustworthy medical knowledge synthesis, extraction and summarization. This paper focuses on the problem of Pharmacovigilance (PhV), where the significance and challenges lie in identifying Adverse Drug Events (ADEs) from diverse text sources, such as medical literature, clinical notes, and drug labels. Unfortunately, this task is hindered by factors including variations in the terminologies of drugs and outcomes, and ADE descriptions often being buried in large amounts of narrative text. We present MALADE, the first effective collaborative multi-agent system powered by LLM with Retrieval Augmented Generation for ADE extraction from drug label data. This technique involves augmenting a query to an LLM with relevant information extracted from text resources, and instructing the LLM to compose a response consistent with the augmented data. MALADE is a general LLM-agnostic architecture, and its unique capabilities are: (1) leveraging a variety of external sources, such as medical literature, drug labels, and FDA tools (e.g., OpenFDA drug information API), (2) extracting drug-outcome association in a structured format along with the strength of the association, and (3) providing explanations for established associations. Instantiated with GPT-4 Turbo or GPT-4o, and FDA drug label data, MALADE demonstrates its efficacy with an Area Under ROC Curve of 0.90 against the OMOP Ground Truth table of ADEs. Our implementation leverages the Langroid multi-agent LLM framework and can be found at https://github.com/jihyechoi77/malade. 7 authors · Aug 3, 2024
1 DAEDRA: A language model for predicting outcomes in passive pharmacovigilance reporting Over the recent years, the emergence of large language models (LLMs) has given rise to a proliferation of domain-specific models that are intended to reflect the particularities of linguistic context and content as a correlate of the originating domain. This paper details the conception, design, training and evaluation of DAEDRA, a LLM designed to detect regulatory-relevant outcomes (mortality, ER attendance and hospitalisation) in adverse event reports elicited through passive reporting (PR). While PR is a highly cost-efficient way of eliciting information from a wide and diverse audience -- typically including not only physicians and healthcare providers but also patients, family members and other lay stakeholders --, this diversity makes PR corpora difficult to analyse. Generic language models may not capture the complex clinical dimensions while specific clinical or biomedical models may not perform well on lay reports. To evaluate the utility of a subdomain-specific language model, an adaptive training approach was adapted, wherein base language model candidates were evaluated on a subset of the corpus, and the best performer was trained on the entire corpus. This yielded a small but significant improvement in F_1 (+1%), precision (+2.5%) and recall (+3.8%), at a relatively low training cost and a single-day training time. Subdomain-specific LLMs continue to be viable options for better results when analysing highly specialised corpora. 1 authors · Feb 10, 2024
- Enhancing Adverse Drug Event Detection with Multimodal Dataset: Corpus Creation and Model Development The mining of adverse drug events (ADEs) is pivotal in pharmacovigilance, enhancing patient safety by identifying potential risks associated with medications, facilitating early detection of adverse events, and guiding regulatory decision-making. Traditional ADE detection methods are reliable but slow, not easily adaptable to large-scale operations, and offer limited information. With the exponential increase in data sources like social media content, biomedical literature, and Electronic Medical Records (EMR), extracting relevant ADE-related information from these unstructured texts is imperative. Previous ADE mining studies have focused on text-based methodologies, overlooking visual cues, limiting contextual comprehension, and hindering accurate interpretation. To address this gap, we present a MultiModal Adverse Drug Event (MMADE) detection dataset, merging ADE-related textual information with visual aids. Additionally, we introduce a framework that leverages the capabilities of LLMs and VLMs for ADE detection by generating detailed descriptions of medical images depicting ADEs, aiding healthcare professionals in visually identifying adverse events. Using our MMADE dataset, we showcase the significance of integrating visual cues from images to enhance overall performance. This approach holds promise for patient safety, ADE awareness, and healthcare accessibility, paving the way for further exploration in personalized healthcare. 5 authors · May 24, 2024