- Comparison of Time-Frequency Representations for Environmental Sound Classification using Convolutional Neural Networks Recent successful applications of convolutional neural networks (CNNs) to audio classification and speech recognition have motivated the search for better input representations for more efficient training. Visual displays of an audio signal, through various time-frequency representations such as spectrograms offer a rich representation of the temporal and spectral structure of the original signal. In this letter, we compare various popular signal processing methods to obtain this representation, such as short-time Fourier transform (STFT) with linear and Mel scales, constant-Q transform (CQT) and continuous Wavelet transform (CWT), and assess their impact on the classification performance of two environmental sound datasets using CNNs. This study supports the hypothesis that time-frequency representations are valuable in learning useful features for sound classification. Moreover, the actual transformation used is shown to impact the classification accuracy, with Mel-scaled STFT outperforming the other discussed methods slightly and baseline MFCC features to a large degree. Additionally, we observe that the optimal window size during transformation is dependent on the characteristics of the audio signal and architecturally, 2D convolution yielded better results in most cases compared to 1D. 1 authors · Jun 21, 2017
- Mel-Band RoFormer for Music Source Separation Recently, multi-band spectrogram-based approaches such as Band-Split RNN (BSRNN) have demonstrated promising results for music source separation. In our recent work, we introduce the BS-RoFormer model which inherits the idea of band-split scheme in BSRNN at the front-end, and then uses the hierarchical Transformer with Rotary Position Embedding (RoPE) to model the inner-band and inter-band sequences for multi-band mask estimation. This model has achieved state-of-the-art performance, but the band-split scheme is defined empirically, without analytic supports from the literature. In this paper, we propose Mel-RoFormer, which adopts the Mel-band scheme that maps the frequency bins into overlapped subbands according to the mel scale. In contract, the band-split mapping in BSRNN and BS-RoFormer is non-overlapping and designed based on heuristics. Using the MUSDB18HQ dataset for experiments, we demonstrate that Mel-RoFormer outperforms BS-RoFormer in the separation tasks of vocals, drums, and other stems. 3 authors · Oct 3, 2023
3 Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions This paper describes Tacotron 2, a neural network architecture for speech synthesis directly from text. The system is composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize timedomain waveforms from those spectrograms. Our model achieves a mean opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for professionally recorded speech. To validate our design choices, we present ablation studies of key components of our system and evaluate the impact of using mel spectrograms as the input to WaveNet instead of linguistic, duration, and F_0 features. We further demonstrate that using a compact acoustic intermediate representation enables significant simplification of the WaveNet architecture. 13 authors · Dec 15, 2017