new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 21

Matrix-Game: Interactive World Foundation Model

We introduce Matrix-Game, an interactive world foundation model for controllable game world generation. Matrix-Game is trained using a two-stage pipeline that first performs large-scale unlabeled pretraining for environment understanding, followed by action-labeled training for interactive video generation. To support this, we curate Matrix-Game-MC, a comprehensive Minecraft dataset comprising over 2,700 hours of unlabeled gameplay video clips and over 1,000 hours of high-quality labeled clips with fine-grained keyboard and mouse action annotations. Our model adopts a controllable image-to-world generation paradigm, conditioned on a reference image, motion context, and user actions. With over 17 billion parameters, Matrix-Game enables precise control over character actions and camera movements, while maintaining high visual quality and temporal coherence. To evaluate performance, we develop GameWorld Score, a unified benchmark measuring visual quality, temporal quality, action controllability, and physical rule understanding for Minecraft world generation. Extensive experiments show that Matrix-Game consistently outperforms prior open-source Minecraft world models (including Oasis and MineWorld) across all metrics, with particularly strong gains in controllability and physical consistency. Double-blind human evaluations further confirm the superiority of Matrix-Game, highlighting its ability to generate perceptually realistic and precisely controllable videos across diverse game scenarios. To facilitate future research on interactive image-to-world generation, we will open-source the Matrix-Game model weights and the GameWorld Score benchmark at https://github.com/SkyworkAI/Matrix-Game.

  • 11 authors
·
Jun 23 2

Matryoshka Multimodal Models

Large Multimodal Models (LMMs) such as LLaVA have shown strong performance in visual-linguistic reasoning. These models first embed images into a fixed large number of visual tokens and then feed them into a Large Language Model (LLM). However, this design causes an excessive number of tokens for dense visual scenarios such as high-resolution images and videos, leading to great inefficiency. While token pruning/merging methods do exist, they produce a single length output for each image and do not afford flexibility in trading off information density v.s. efficiency. Inspired by the concept of Matryoshka Dolls, we propose M3: Matryoshka Multimodal Models, which learns to represent visual content as nested sets of visual tokens that capture information across multiple coarse-to-fine granularities. Our approach offers several unique benefits for LMMs: (1) One can explicitly control the visual granularity per test instance during inference, e.g. , adjusting the number of tokens used to represent an image based on the anticipated complexity or simplicity of the content; (2) M3 provides a framework for analyzing the granularity needed for existing datasets, where we find that COCO-style benchmarks only need around ~9 visual tokens to obtain accuracy similar to that of using all 576 tokens; (3) Our approach provides a foundation to explore the best trade-off between performance and visual token length at sample level, where our investigation reveals that a large gap exists between the oracle upper bound and current fixed-scale representations.

  • 4 authors
·
May 27, 2024 3

Matryoshka Representation Learning

Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.

  • 11 authors
·
May 26, 2022

2D Matryoshka Sentence Embeddings

Common approaches rely on fixed-length embedding vectors from language models as sentence embeddings for downstream tasks such as semantic textual similarity (STS). Such methods are limited in their flexibility due to unknown computational constraints and budgets across various applications. Matryoshka Representation Learning (MRL) (Kusupati et al., 2022) encodes information at finer granularities, i.e., with lower embedding dimensions, to adaptively accommodate ad hoc tasks. Similar accuracy can be achieved with a smaller embedding size, leading to speedups in downstream tasks. Despite its improved efficiency, MRL still requires traversing all Transformer layers before obtaining the embedding, which remains the dominant factor in time and memory consumption. This prompts consideration of whether the fixed number of Transformer layers affects representation quality and whether using intermediate layers for sentence representation is feasible. In this paper, we introduce a novel sentence embedding model called Two-dimensional Matryoshka Sentence Embedding (2DMSE). It supports elastic settings for both embedding sizes and Transformer layers, offering greater flexibility and efficiency than MRL. We conduct extensive experiments on STS tasks and downstream applications. The experimental results demonstrate the effectiveness of our proposed model in dynamically supporting different embedding sizes and Transformer layers, allowing it to be highly adaptable to various scenarios.

  • 5 authors
·
Feb 22, 2024

MoME: Mixture of Matryoshka Experts for Audio-Visual Speech Recognition

Large language models (LLMs) have recently shown strong potential in audio-visual speech recognition (AVSR), but their high computational demands and sensitivity to token granularity limit their practicality in resource-constrained settings. Token compression methods can reduce inference cost, but they require fixing a compression rate in advance and produce a single fixed-length output, offering no flexibility to balance information density and efficiency at inference time. Matryoshka representation learning (MRL) addresses this by enabling a single model to operate across multiple token granularities, allowing compression rates to be adjusted dynamically. However, current MRL-based methods treat each scale independently during training, limiting cross-scale generalization, robustness at high compression, and interpretability. To overcome these limitations, we propose MoME (Mixture of Matryoshka Experts), a novel framework that integrates sparse Mixture-of-Experts (MoE) into MRL-based LLMs for AVSR. MoME augments a frozen LLM with top-k routed and shared experts, allowing dynamic capacity allocation across scales and modalities. A shared router promotes consistent expert activation across granularities, enabling compressed sequences to benefit from representations learned at lower compression. Experiments on LRS2 and LRS3 demonstrate that MoME achieves state-of-the-art performance across AVSR, ASR, and VSR tasks, while requiring significantly fewer parameters and maintaining robustness under noise. MoME unifies the adaptability of MRL with the efficiency of MoE, offering a scalable and interpretable solution for resource-aware speech recognition.

Matryoshka: Stealing Functionality of Private ML Data by Hiding Models in Model

In this paper, we present a novel insider attack called Matryoshka, which employs an irrelevant scheduled-to-publish DNN model as a carrier model for covert transmission of multiple secret models which memorize the functionality of private ML data stored in local data centers. Instead of treating the parameters of the carrier model as bit strings and applying conventional steganography, we devise a novel parameter sharing approach which exploits the learning capacity of the carrier model for information hiding. Matryoshka simultaneously achieves: (i) High Capacity -- With almost no utility loss of the carrier model, Matryoshka can hide a 26x larger secret model or 8 secret models of diverse architectures spanning different application domains in the carrier model, neither of which can be done with existing steganography techniques; (ii) Decoding Efficiency -- once downloading the published carrier model, an outside colluder can exclusively decode the hidden models from the carrier model with only several integer secrets and the knowledge of the hidden model architecture; (iii) Effectiveness -- Moreover, almost all the recovered models have similar performance as if it were trained independently on the private data; (iv) Robustness -- Information redundancy is naturally implemented to achieve resilience against common post-processing techniques on the carrier before its publishing; (v) Covertness -- A model inspector with different levels of prior knowledge could hardly differentiate a carrier model from a normal model.

  • 5 authors
·
Jun 28, 2022

Matryoshka: Learning to Drive Black-Box LLMs with LLMs

Despite the impressive generative abilities of black-box large language models (LLMs), their inherent opacity hinders further advancements in capabilities such as reasoning, planning, and personalization. Existing works aim to enhance LLM capabilities via domain-specific adaptation or in-context learning, which require additional training on accessible model parameters, an infeasible option for black-box LLMs. To address this challenge, we introduce Matryoshika, a lightweight white-box LLM controller that guides a large-scale black-box LLM generator by decomposing complex tasks into a series of intermediate outputs. Specifically, we consider the black-box LLM as an environment, with Matryoshika serving as a policy to provide intermediate guidance through prompts for driving the black-box LLM. Matryoshika is trained to pivot the outputs of the black-box LLM aligning with preferences during iterative interaction, which enables controllable multi-turn generation and self-improvement in optimizing intermediate guidance. Empirical evaluations on three diverse tasks demonstrate that Matryoshika effectively enhances the capabilities of black-box LLMs in complex, long-horizon tasks, including reasoning, planning, and personalization. By leveraging this pioneering controller-generator framework to mitigate dependence on model parameters, Matryoshika provides a transparent and practical solution for improving black-box LLMs through controllable multi-turn generation using white-box LLMs.

  • 7 authors
·
Oct 28, 2024

Matryoshka Query Transformer for Large Vision-Language Models

Large Vision-Language Models (LVLMs) typically encode an image into a fixed number of visual tokens (e.g., 576) and process these tokens with a language model. Despite their strong performance, LVLMs face challenges in adapting to varying computational constraints. This raises the question: can we achieve flexibility in the number of visual tokens to suit different tasks and computational resources? We answer this with an emphatic yes. Inspired by Matryoshka Representation Learning, we introduce the Matryoshka Query Transformer (MQT), capable of encoding an image into m visual tokens during inference, where m can be any number up to a predefined maximum. This is achieved by employing a query transformer with M latent query tokens to compress the visual embeddings. During each training step, we randomly select m <= M latent query tokens and train the model using only these first m tokens, discarding the rest. Combining MQT with LLaVA, we train a single model once, and flexibly and drastically reduce the number of inference-time visual tokens while maintaining similar or better performance compared to training independent models for each number of tokens. Our model, MQT-LLAVA, matches LLaVA-1.5 performance across 11 benchmarks using a maximum of 256 tokens instead of LLaVA's fixed 576. Reducing to 16 tokens (8x less TFLOPs) only sacrifices the performance by 2.4 points on MMBench. On certain tasks such as ScienceQA and MMMU, we can even go down to only 2 visual tokens with performance drops of just 3% and 6% each. Our exploration of the trade-off between the accuracy and computational cost brought about by the number of visual tokens facilitates future research to achieve the best of both worlds.

  • 6 authors
·
May 29, 2024

MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection

KV cache has become a de facto technique for the inference of large language models (LLMs), where tensors of shape (layer number, head number, sequence length, feature dimension) are introduced to cache historical information for self-attention. As the size of the model and data grows, the KV cache can quickly become a bottleneck within the system in both storage and memory transfer. To address this, prior studies usually focus on the first three axes of the cache tensors for compression. This paper supplements them, focusing on the feature dimension axis, by utilizing low-rank projection matrices to transform the cache features into spaces with reduced dimensions. We begin by investigating the canonical orthogonal projection method for data compression through principal component analysis (PCA). We observe the issue with PCA projection where significant performance degradation is observed at low compression rates. To bridge the gap, we propose to directly tune the orthogonal projection matrices with a distillation objective using an elaborate Matryoshka training strategy. After training, we adaptively search for the optimal compression rates for various layers and heads given varying compression budgets. Compared to previous works, our method can easily embrace pre-trained LLMs and hold a smooth tradeoff between performance and compression rate. We empirically witness the high data efficiency of our training procedure and find that our method can sustain over 90% performance with an average KV cache compression rate of 60% (and up to 75% in certain extreme scenarios) for popular LLMs like LLaMA2-7B-base and Mistral-7B-v0.3-base.

  • 8 authors
·
Oct 16, 2024

Large Language Model Evaluation via Matrix Nuclear-Norm

As large language models (LLMs) continue to evolve, efficient evaluation metrics are vital for assessing their ability to compress information and reduce redundancy. While traditional metrics like Matrix Entropy offer valuable insights, they are computationally intensive for large-scale models due to their \( O(n^3) \) time complexity with Singular Value Decomposition (SVD). To mitigate this issue, we introduce the Matrix Nuclear-Norm, which not only serves as a metric to quantify the data compression proficiency of LLM but also provides a convex approximation of matrix rank to capture both predictive discriminability and diversity. By employing the \( L_{1,2}-norm \) to further approximate the nuclear norm, we can effectively assess the model's information compression capabilities. This approach reduces the time complexity to \( O(n^2) \) and eliminates the need for SVD computation. Consequently, the Matrix Nuclear-Norm achieves speeds 8 to 24 times faster than Matrix Entropy for the CEREBRAS-GPT model as sizes increase from 111M to 6.7B. This performance gap becomes more pronounced with larger models, as validated in tests with other models like Pythia. Additionally, evaluations on benchmarks and model responses confirm that our proposed Matrix Nuclear-Norm is a reliable, scalable, and efficient tool for assessing LLMs' performance, striking a balance between accuracy and computational efficiency. The code is available at https://github.com/MLGroupJLU/MatrixNuclearNorm.

  • 4 authors
·
Oct 14, 2024 2

Monarch: Expressive Structured Matrices for Efficient and Accurate Training

Large neural networks excel in many domains, but they are expensive to train and fine-tune. A popular approach to reduce their compute or memory requirements is to replace dense weight matrices with structured ones (e.g., sparse, low-rank, Fourier transform). These methods have not seen widespread adoption (1) in end-to-end training due to unfavorable efficiency--quality tradeoffs, and (2) in dense-to-sparse fine-tuning due to lack of tractable algorithms to approximate a given dense weight matrix. To address these issues, we propose a class of matrices (Monarch) that is hardware-efficient (they are parameterized as products of two block-diagonal matrices for better hardware utilization) and expressive (they can represent many commonly used transforms). Surprisingly, the problem of approximating a dense weight matrix with a Monarch matrix, though nonconvex, has an analytical optimal solution. These properties of Monarch matrices unlock new ways to train and fine-tune sparse and dense models. We empirically validate that Monarch can achieve favorable accuracy-efficiency tradeoffs in several end-to-end sparse training applications: speeding up ViT and GPT-2 training on ImageNet classification and Wikitext-103 language modeling by 2x with comparable model quality, and reducing the error on PDE solving and MRI reconstruction tasks by 40%. In sparse-to-dense training, with a simple technique called "reverse sparsification," Monarch matrices serve as a useful intermediate representation to speed up GPT-2 pretraining on OpenWebText by 2x without quality drop. The same technique brings 23% faster BERT pretraining than even the very optimized implementation from Nvidia that set the MLPerf 1.1 record. In dense-to-sparse fine-tuning, as a proof-of-concept, our Monarch approximation algorithm speeds up BERT fine-tuning on GLUE by 1.7x with comparable accuracy.

  • 10 authors
·
Apr 1, 2022

MTQA:Matrix of Thought for Enhanced Reasoning in Complex Question Answering

Complex Question Answering (QA) is a fundamental and challenging task in NLP. While large language models (LLMs) exhibit impressive performance in QA, they suffer from significant performance degradation when facing complex and abstract QA tasks due to insufficient reasoning capabilities. Works such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) aim to enhance LLMs' reasoning abilities, but they face issues such as in-layer redundancy in tree structures and single paths in chain structures. Although some studies utilize Retrieval-Augmented Generation (RAG) methods to assist LLMs in reasoning, the challenge of effectively utilizing large amounts of information involving multiple entities and hops remains critical. To address this, we propose the Matrix of Thought (MoT), a novel and efficient LLM thought structure. MoT explores the problem in both horizontal and vertical dimensions through the "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep-level thinking, reducing redundancy within the column cells and enhancing reasoning capabilities. Furthermore, we develop a fact-correction mechanism by constructing knowledge units from retrieved knowledge graph triples and raw text to enhance the initial knowledge for LLM reasoning and correct erroneous answers. This leads to the development of an efficient and accurate QA framework (MTQA). Experimental results show that our framework outperforms state-of-the-art methods on four widely-used datasets in terms of F1 and EM scores, with reasoning time only 14.4\% of the baseline methods, demonstrating both its efficiency and accuracy. The code for this framework is available at https://github.com/lyfiter/mtqa.

  • 4 authors
·
Sep 4

Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON

Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications

  • 1 authors
·
Feb 8, 2022

SMASH: Sparse Matrix Atomic Scratchpad Hashing

Sparse matrices, more specifically SpGEMM kernels, are commonly found in a wide range of applications, spanning graph-based path-finding to machine learning algorithms (e.g., neural networks). A particular challenge in implementing SpGEMM kernels has been the pressure placed on DRAM memory. One approach to tackle this problem is to use an inner product method for the SpGEMM kernel implementation. While the inner product produces fewer intermediate results, it can end up saturating the memory bandwidth, given the high number of redundant fetches of the input matrix elements. Using an outer product-based SpGEMM kernel can reduce redundant fetches, but at the cost of increased overhead due to extra computation and memory accesses for producing/managing partial products. In this thesis, we introduce a novel SpGEMM kernel implementation based on the row-wise product approach. We leverage atomic instructions to merge intermediate partial products as they are generated. The use of atomic instructions eliminates the need to create partial product matrices. To evaluate our row-wise product approach, we map an optimized SpGEMM kernel to a custom accelerator designed to accelerate graph-based applications. The targeted accelerator is an experimental system named PIUMA, being developed by Intel. PIUMA provides several attractive features, including fast context switching, user-configurable caches, globally addressable memory, non-coherent caches, and asynchronous pipelines. We tailor our SpGEMM kernel to exploit many of the features of the PIUMA fabric. This thesis compares our SpGEMM implementation against prior solutions, all mapped to the PIUMA framework. We briefly describe some of the PIUMA architecture features and then delve into the details of our optimized SpGEMM kernel. Our SpGEMM kernel can achieve 9.4x speedup as compared to competing approaches.

  • 1 authors
·
May 28, 2021

Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning

We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.

  • 8 authors
·
Jul 18 5

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

Large language models have been widely adopted but require significant GPU memory for inference. We develop a procedure for Int8 matrix multiplication for feed-forward and attention projection layers in transformers, which cut the memory needed for inference by half while retaining full precision performance. With our method, a 175B parameter 16/32-bit checkpoint can be loaded, converted to Int8, and used immediately without performance degradation. This is made possible by understanding and working around properties of highly systematic emergent features in transformer language models that dominate attention and transformer predictive performance. To cope with these features, we develop a two-part quantization procedure, LLM.int8(). We first use vector-wise quantization with separate normalization constants for each inner product in the matrix multiplication, to quantize most of the features. However, for the emergent outliers, we also include a new mixed-precision decomposition scheme, which isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9% of values are multiplied in 8-bit. Using LLM.int8(), we show empirically it is possible to perform inference in LLMs with up to 175B parameters without any performance degradation. This result makes such models much more accessible, for example making it possible to use OPT-175B/BLOOM on a single server with consumer GPUs. We open-source our software.

  • 4 authors
·
Aug 15, 2022 1

Hydra: Bidirectional State Space Models Through Generalized Matrix Mixers

A wide array of sequence models are built on a framework modeled after Transformers, comprising alternating sequence mixer and channel mixer layers. This paper studies a unifying matrix mixer view of sequence mixers that can be conceptualized as a linear map on the input sequence. This framework encompasses a broad range of well-known sequence models, including the self-attention of Transformers as well as recent strong alternatives such as structured state space models (SSMs), and allows understanding downstream characteristics such as efficiency and expressivity through properties of their structured matrix class. We identify a key axis of matrix parameterizations termed sequence alignment, which increases the flexibility and performance of matrix mixers, providing insights into the strong performance of Transformers and recent SSMs such as Mamba. Furthermore, the matrix mixer framework offers a systematic approach to developing sequence mixers with desired properties, allowing us to develop several new sub-quadratic sequence models. In particular, we propose a natural bidirectional extension of the Mamba model (Hydra), parameterized as a quasiseparable matrix mixer, which demonstrates superior performance over other sequence models including Transformers on non-causal tasks. As a drop-in replacement for attention layers, Hydra outperforms BERT by 0.8 points on the GLUE benchmark and ViT by 2% Top-1 accuracy on ImageNet.

  • 4 authors
·
Jul 13, 2024

Classification of BCI-EEG based on augmented covariance matrix

Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.

  • 2 authors
·
Feb 9, 2023

CAMERA: Multi-Matrix Joint Compression for MoE Models via Micro-Expert Redundancy Analysis

Large Language Models (LLMs) with Mixture-of-Experts (MoE) architectures are distinguished by their strong performance scaling with increasing parameters across a wide range of tasks, yet they also suffer from substantial computational and storage overheads. Notably, the performance gains of MoE models do not scale proportionally with the growth in expert parameters. While prior works attempt to reduce parameters via expert-level pruning, merging, or decomposition, they still suffer from challenges in both performance and computational efficiency. In this paper, we address these challenges by introducing micro-expert as a finer-grained compression unit that spans across matrices. We first establish a more fundamental perspective, viewing MoE layers as mixtures of micro-experts, and present CAMERA, a lightweight and training-free framework for identifying micro-expert redundancy. Our analysis uncovers significant variance in micro-expert contributions during decoding. Based on this insight, we further propose CAMERA-P, a structured micro-expert pruning framework, and CAMERA-Q, a mixed-precision quantization idea designed for micro-experts. Extensive experiments on nine downstream tasks show that CAMERA-P consistently outperforms strong baselines under pruning ratios ranging from 20% to 60%. Furthermore, CAMERA-Q achieves superior results under aggressive 2-bit quantization, surpassing existing matrix- and channel-level ideas. Notably, our method enables complete micro-expert analysis of Qwen2-57B-A14B in less than 5 minutes on a single NVIDIA A100-40GB GPU.

  • 8 authors
·
Aug 4

Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time

Given a matrix Min R^{mtimes n}, the low rank matrix completion problem asks us to find a rank-k approximation of M as UV^top for Uin R^{mtimes k} and Vin R^{ntimes k} by only observing a few entries specified by a set of entries Omegasubseteq [m]times [n]. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~jns13 showed that if M has incoherent rows and columns, then alternating minimization provably recovers the matrix M by observing a nearly linear in n number of entries. While the sample complexity has been subsequently improved~glz17, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time widetilde O(|Omega| k), which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require widetilde O(|Omega| k^2) time.

  • 4 authors
·
Feb 21, 2023

LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models

Recent advances in self-supervised learning and the Transformer architecture have significantly improved natural language processing (NLP), achieving remarkably low perplexity. However, the growing size of NLP models introduces a memory wall problem during the generation phase. To mitigate this issue, recent efforts have focused on quantizing model weights to sub-4-bit precision while preserving full precision for activations, resulting in practical speed-ups during inference on a single GPU. However, these improvements primarily stem from reduced memory movement, which necessitates a resource-intensive dequantization process rather than actual computational reduction. In this paper, we introduce LUT-GEMM, an efficient kernel for quantized matrix multiplication, which not only eliminates the resource-intensive dequantization process but also reduces computational costs compared to previous kernels for weight-only quantization. Furthermore, we proposed group-wise quantization to offer a flexible trade-off between compression ratio and accuracy. The impact of LUT-GEMM is facilitated by implementing high compression ratios through low-bit quantization and efficient LUT-based operations. We show experimentally that when applied to the OPT-175B model with 3-bit quantization, LUT-GEMM substantially accelerates token generation latency, achieving a remarkable 2.1times improvement on a single GPU when compared to OPTQ, which relies on the costly dequantization process.

  • 10 authors
·
Jun 19, 2022

M-FAC: Efficient Matrix-Free Approximations of Second-Order Information

Efficiently approximating local curvature information of the loss function is a key tool for optimization and compression of deep neural networks. Yet, most existing methods to approximate second-order information have high computational or storage costs, which can limit their practicality. In this work, we investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs) for the case when the Hessian can be approximated as a sum of rank-one matrices, as in the classic approximation of the Hessian by the empirical Fisher matrix. We propose two new algorithms as part of a framework called M-FAC: the first algorithm is tailored towards network compression and can compute the IHVP for dimension d, if the Hessian is given as a sum of m rank-one matrices, using O(dm^2) precomputation, O(dm) cost for computing the IHVP, and query cost O(m) for any single element of the inverse Hessian. The second algorithm targets an optimization setting, where we wish to compute the product between the inverse Hessian, estimated over a sliding window of optimization steps, and a given gradient direction, as required for preconditioned SGD. We give an algorithm with cost O(dm + m^2) for computing the IHVP and O(dm + m^3) for adding or removing any gradient from the sliding window. These two algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods. Implementations are available at [9] and [17].

  • 3 authors
·
Jul 7, 2021

On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties

In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p.

  • 4 authors
·
Jun 28, 2021