SongFormer: Scaling Music Structure Analysis with Heterogeneous Supervision
Abstract
SongFormer, a scalable framework using heterogeneous supervision, achieves state-of-the-art performance in music structure analysis with a large, diverse dataset and benchmark.
Music structure analysis (MSA) underpins music understanding and controllable generation, yet progress has been limited by small, inconsistent corpora. We present SongFormer, a scalable framework that learns from heterogeneous supervision. SongFormer (i) fuses short- and long-window self-supervised audio representations to capture both fine-grained and long-range dependencies, and (ii) introduces a learned source embedding to enable training with partial, noisy, and schema-mismatched labels. To support scaling and fair evaluation, we release SongFormDB, the largest MSA corpus to date (over 10k tracks spanning languages and genres), and SongFormBench, a 300-song expert-verified benchmark. On SongFormBench, SongFormer sets a new state of the art in strict boundary detection (HR.5F) and achieves the highest functional label accuracy, while remaining computationally efficient; it surpasses strong baselines and Gemini 2.5 Pro on these metrics and remains competitive under relaxed tolerance (HR3F). Code, datasets, and model are publicly available.
Models citing this paper 1
Datasets citing this paper 2
Spaces citing this paper 1
Collections including this paper 0
No Collection including this paper