TERAG: Token-Efficient Graph-Based Retrieval-Augmented Generation
Abstract
TERAG is a cost-effective graph-based retrieval-augmented generation framework that reduces token usage while maintaining high accuracy.
Graph-based Retrieval-augmented generation (RAG) has become a widely studied approach for improving the reasoning, accuracy, and factuality of Large Language Models (LLMs). However, many existing graph-based RAG systems overlook the high cost associated with LLM token usage during graph construction, hindering large-scale adoption. To address this, we propose TERAG, a simple yet effective framework designed to build informative graphs at a significantly lower cost. Inspired by HippoRAG, we incorporate Personalized PageRank (PPR) during the retrieval phase, and we achieve at least 80% of the accuracy of widely used graph-based RAG methods while consuming only 3%-11% of the output tokens. With its low token footprint and efficient construction pipeline, TERAG is well-suited for large-scale and cost-sensitive deployment scenarios.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper