Lex-BERT: Enhancing BERT based NER with lexicons
Abstract
Lex-BERT enhances Chinese BERT for NER by using special tokens to identify word boundaries, improving efficiency and performance without additional parameters or word embeddings.
In this work, we represent Lex-BERT, which incorporates the lexicon information into Chinese BERT for named entity recognition (NER) tasks in a natural manner. Instead of using word embeddings and a newly designed transformer layer as in FLAT, we identify the boundary of words in the sentences using special tokens, and the modified sentence will be encoded directly by BERT. Our model does not introduce any new parameters and are more efficient than FLAT. In addition, we do not require any word embeddings accompanying the lexicon collection. Experiments on Ontonotes and ZhCrossNER show that our model outperforms FLAT and other baselines.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper