File size: 12,420 Bytes
8062b24
 
 
c609965
 
 
a99feaf
 
 
c609965
8062b24
 
031c41b
8062b24
94dbb00
c609965
8062b24
c609965
 
 
 
 
 
 
 
 
 
 
 
031c41b
c609965
 
 
 
031c41b
c609965
 
 
 
 
 
 
 
 
 
 
 
a99feaf
 
 
 
 
c609965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a99feaf
 
c609965
 
8dbeb08
c609965
 
 
a99feaf
 
 
c609965
 
 
 
d64c54a
8dbeb08
 
 
 
c609965
8dbeb08
 
 
c609965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
031c41b
 
 
8dbeb08
c609965
 
8dbeb08
 
 
 
c609965
 
 
 
 
 
8dbeb08
c609965
8dbeb08
 
c609965
8dbeb08
 
c609965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
031c41b
 
 
 
 
c609965
 
 
 
031c41b
c609965
 
d64c54a
c609965
 
 
 
031c41b
c609965
 
031c41b
c609965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
031c41b
 
 
 
 
 
 
 
 
 
c609965
 
031c41b
 
 
c609965
 
031c41b
 
 
c609965
8dbeb08
 
 
 
 
 
 
 
 
 
 
 
 
 
c609965
 
 
 
 
 
031c41b
c609965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
031c41b
 
 
 
 
c609965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
031c41b
c609965
8062b24
c609965
 
 
 
 
 
 
 
a99feaf
 
 
5621891
a99feaf
 
 
 
5621891
a99feaf
 
8dbeb08
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
import torch
import numpy as np
import librosa
import soundfile as sf
import traceback
import base64
import io
import wave

from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
from vllm import LLM, SamplingParams

class EndpointHandler:
  def __init__(self, path=""):

    # Delimiter tokens as defined in Orpheus' vocabulary
    self.START_OF_HUMAN =      128259
    self.START_OF_TEXT =       128000
    self.END_OF_TEXT =         128009
    self.END_OF_HUMAN =        128260
    self.START_OF_AI =         128261
    self.START_OF_SPEECH =     128257
    self.END_OF_SPEECH =       128258
    self.END_OF_AI =           128262
    self.AUDIO_TOKENS_START =  128266

    # Load the models and tokenizer
    self.model = LLM(path, max_model_len = 4096, gpu_memory_utilization = 0.3)
    self.tokenizer = AutoTokenizer.from_pretrained(path)

    # Move to devices
    self.device = "cuda" if torch.cuda.is_available() else "cpu"
    # self.model.to(self.device)

    # Load SNAC model for audio decoding
    try:
      self.snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
      self.snac_model.to(self.device)
    except Exception as e:
      raise RuntimeError(f"Failed to load SNAC model: {e}")

  # Set up functions to format and encode text/audio
  def encode_text(self, text):
    return self.tokenizer.encode(text, return_tensors="pt", add_special_tokens=False)

  def encode_audio(self, base64_audio_str):
    audio_bytes = base64.b64decode(base64_audio_str)
    audio_buffer = io.BytesIO(audio_bytes)
    waveform, sr = sf.read(audio_buffer, dtype='float32')

    if waveform.ndim > 1:
      waveform = np.mean(waveform, axis=1)
    if sr != 24000:
      waveform = librosa.resample(waveform, orig_sr=sr, target_sr=24000)
    return self.tokenize_audio(waveform)

  def format_text_block(self, text_ids):
    return [
        torch.tensor([[self.START_OF_HUMAN]], dtype=torch.int64),
        torch.tensor([[self.START_OF_TEXT]], dtype=torch.int64),
        text_ids,
        torch.tensor([[self.END_OF_TEXT]], dtype=torch.int64),
        torch.tensor([[self.END_OF_HUMAN]], dtype=torch.int64)
    ]

  def format_audio_block(self, audio_codes):
    return [
        torch.tensor([[self.START_OF_AI]], dtype=torch.int64),
        torch.tensor([[self.START_OF_SPEECH]], dtype=torch.int64),
        torch.tensor([audio_codes], dtype=torch.int64),
        torch.tensor([[self.END_OF_SPEECH]], dtype=torch.int64),
        torch.tensor([[self.END_OF_AI]], dtype=torch.int64)
    ]

  def enroll_user(self, enrollment_pairs):
    """
    Parameters:
    - enrollment_pairs: List of tuples (text, audio_data), where audio_data is
    base64-encoded audio data

    Returns:
    - cloning_features (str): serialized enrollment data
    """
    enrollment_data = []

    for text, base64_audio in enrollment_pairs:
      text_ids = self.encode_text(text).cpu()
      audio_codes = self.encode_audio(base64_audio)
      enrollment_data.append({
          "text_ids": text_ids,
          "audio_codes": audio_codes
      })

    # Serialize enrollment data
    buffer = io.BytesIO()
    torch.save(enrollment_data, buffer)
    buffer.seek(0)

    # Encode as base64 string and assign to attribute
    cloning_features = base64.b64encode(buffer.read()).decode('utf-8')
    return cloning_features

  def prepare_audio_tokens_for_decoder(self, audio_codes_list):
    """
    Given a list containing sequences of generated audio codes, do the following:
    1. Trim length to a multiple of 7 (SNAC decoder requires 7 tokens per audio frame)
    2. Adjust token values to SNAC decoder's expected range
    """
    modified_audio_codes_list = []
    for audio_codes in audio_codes_list:

      # Trim length to a multiple of 7
      length = (audio_codes.size(0) // 7) * 7
      trimmed = audio_codes[:length]

      # Adjust token values to SNAC decoder's expected range
      audio_codes = trimmed - self.AUDIO_TOKENS_START

      # Add modified audio codes to list
      modified_audio_codes_list.append(audio_codes)

    return modified_audio_codes_list

  # Convert audio sample to codes and reconstruct
  def tokenize_audio(self, waveform):
    waveform = torch.from_numpy(waveform).unsqueeze(0).unsqueeze(0).to(self.device)

    with torch.inference_mode():
      codes = self.snac_model.encode(waveform)

    all_codes = []
    for i in range(codes[0].shape[1]):

      all_codes.append(codes[0][0][(1 * i) + 0].item() + self.AUDIO_TOKENS_START + (0 * 4096))
      all_codes.append(codes[1][0][(2 * i) + 0].item() + self.AUDIO_TOKENS_START + (1 * 4096))
      all_codes.append(codes[2][0][(4 * i) + 0].item() + self.AUDIO_TOKENS_START + (2 * 4096))
      all_codes.append(codes[2][0][(4 * i) + 1].item() + self.AUDIO_TOKENS_START + (3 * 4096))
      all_codes.append(codes[1][0][(2 * i) + 1].item() + self.AUDIO_TOKENS_START + (4 * 4096))
      all_codes.append(codes[2][0][(4 * i) + 2].item() + self.AUDIO_TOKENS_START + (5 * 4096))
      all_codes.append(codes[2][0][(4 * i) + 3].item() + self.AUDIO_TOKENS_START + (6 * 4096))

    return all_codes

  def preprocess(self, data):

    # Preprocess input data before inference

    self.voice_cloning = data.get("clone", False)

    # Extract parameters from request
    target_text = data["inputs"]
    parameters = data.get("parameters", {})
    cloning_features = data.get("cloning_features", None)

    temperature = float(parameters.get("temperature", 0.6))
    top_p = float(parameters.get("top_p", 0.95))
    max_new_tokens = int(parameters.get("max_new_tokens", 1200))
    repetition_penalty = float(parameters.get("repetition_penalty", 1.1))

    if self.voice_cloning:
      """Handle voice cloning using cloning features"""

      if not cloning_features:
        raise ValueError("No cloning features were provided")
      else:
        # Decode back into tensors
        enrollment_data = torch.load(io.BytesIO(base64.b64decode(cloning_features)))

      # Process pre-tokenized enrollment_data
      input_sequence = []
      for item in enrollment_data:
        text_ids = item["text_ids"]
        audio_codes = item["audio_codes"]
        input_sequence.extend(self.format_text_block(text_ids))
        input_sequence.extend(self.format_audio_block(audio_codes))

      # Append target text whose audio we want
      target_text_ids = self.encode_text(target_text)
      input_sequence.extend(self.format_text_block(target_text_ids))

      # Start of target audio - audio codes to be completed by model
      input_sequence.extend([
          torch.tensor([[self.START_OF_AI]], dtype=torch.int64),
          torch.tensor([[self.START_OF_SPEECH]], dtype=torch.int64)
      ])

      # Final input tensor
      input_ids = torch.cat(input_sequence, dim=1)
      
      # Heuristic to determine max_new_tokens based on empirical relationship
      # between the length of the prompt ids and the length of the generated ids
      prompt_ids = self.encode_text(target_text)
      max_new_tokens = int(prompt_ids.size()[1] * 20 + 200)

      input_ids = input_ids.to(self.device)

    else:
      # Handle standard text-to-speech

      # Extract parameters from request
      voice = parameters.get("voice", "Eniola")
      prompt = f"{voice}: {target_text}"
      input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids

      # Add special tokens
      input_ids = torch.cat(self.format_text_block(input_ids), dim=1)

      # No need for padding as we're processing a single sequence
      input_ids = input_ids.to(self.device)

    return {
        "input_ids": input_ids,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
        "repetition_penalty": repetition_penalty,
    }

  def inference(self, inputs):
    """
    Run model inference on the preprocessed inputs
    """
    # Extract parameters
    input_ids = inputs["input_ids"]

    sampling_params = SamplingParams(
        temperature = inputs["temperature"],
        top_p = inputs["top_p"],
        max_tokens = inputs["max_new_tokens"],        
        repetition_penalty = inputs["repetition_penalty"],
        stop_token_ids = [self.END_OF_SPEECH],
        )
    
    prompt_string = self.tokenizer.decode(input_ids[0])

    # Forward pass through the model
    generated_ids = self.model.generate(prompt_string, sampling_params)

    return torch.tensor(generated_ids[0].outputs[0].token_ids).unsqueeze(0)

  def __call__(self, data):
    
    # Main entry point for the handler

    try:
      enroll_user = data.get("enroll_user", False)

      if enroll_user:
        # We extract cloning features for enrollment
        enrollment_pairs = data.get("enrollments", [])
        cloning_features = self.enroll_user(enrollment_pairs)
        return {"cloning_features": cloning_features}
      else:
        # We want to generate speech using preset cloning features
        preprocessed_inputs = self.preprocess(data)
        model_outputs = self.inference(preprocessed_inputs)
        response = self.postprocess(model_outputs)
        return response

    # Catch that error, baby
    except Exception as e:
      traceback.print_exc()
      return {"error": str(e)}

  # Postprocess generated ids
  def convert_codes_to_waveform(self, code_list):
    """
    Reorganize tokens for SNAC decoding
    """
    layer_1 = []  # Coarsest layer
    layer_2 = []  # Intermediate layer
    layer_3 = []  # Finest layer

    num_groups = len(code_list) // 7
    for i in range(num_groups):
      idx = 7 * i
      layer_1.append(code_list[7 * i + 0] - (0 * 4096))
      layer_2.append(code_list[7 * i + 1] - (1 * 4096))
      layer_3.append(code_list[7 * i + 2] - (2 * 4096))
      layer_3.append(code_list[7 * i + 3] - (3 * 4096))
      layer_2.append(code_list[7 * i + 4] - (4 * 4096))
      layer_3.append(code_list[7 * i + 5] - (5 * 4096))
      layer_3.append(code_list[7 * i + 6] - (6 * 4096))

    codes = [
        torch.tensor(layer_1).unsqueeze(0).to(self.device),
        torch.tensor(layer_2).unsqueeze(0).to(self.device),
        torch.tensor(layer_3).unsqueeze(0).to(self.device)
    ]

    # Decode audio
    audio_hat = self.snac_model.decode(codes)
    return audio_hat

  def postprocess(self, generated_ids):

    if self.voice_cloning:
      """
      For cloning applications, use this postprocess function to get generated audio samples
      """
      # Modify audio codes to be digestible byb SNAC decoder
      code_lists = self.prepare_audio_tokens_for_decoder(generated_ids)

      # Generate audio from codes
      temp = self.convert_codes_to_waveform(code_lists[0])
      audio_sample = temp.detach().squeeze().to("cpu").numpy()

    else:
      """
      Process generated tokens into audio
      """
      # Find Start of Audio token
      token_indices = (generated_ids == self.START_OF_SPEECH).nonzero(as_tuple=True)

      if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
      else:
        cropped_tensor = generated_ids

      # Remove End of Audio tokens
      processed_rows = []
      for row in cropped_tensor:
        masked_row = row[row != self.END_OF_SPEECH]
        processed_rows.append(masked_row)

      code_lists = self.prepare_audio_tokens_for_decoder(processed_rows)

      # Generate audio from codes
      audio_samples = []
      for code_list in code_lists:
        if len(code_list) > 0:
          audio = self.convert_codes_to_waveform(code_list)
          audio_samples.append(audio)
        else:
          raise ValueError("Empty code list, no audio to generate")

      if not audio_samples:
        return {"error": "No audio samples generated"}

      # Return first (and only) audio sample
      audio_sample = audio_samples[0].detach().squeeze().cpu().numpy()

    # Convert float32 array to int16 for WAV format
    audio_int16 = (audio_sample * 32767).astype(np.int16)

    # Write to WAV in memory (float32 or int16 depending on your preference)
    buffer = io.BytesIO()
    sf.write(buffer, audio_sample, samplerate=24000, format='WAV', subtype='PCM_16')  # or PCM_32
    buffer.seek(0)

    # Encode WAV bytes as base64
    audio_b64 = base64.b64encode(buffer.read()).decode('utf-8')

    return {
      "audio_sample": audio_sample,
      "audio_b64": audio_b64,
      "sample_rate": 24000,
    }