nvidia-oliver-holworthy commited on
Commit
fb6df58
·
unverified ·
1 Parent(s): 9e7e16e

Rename nemo retriever references to nemotron

Browse files
Files changed (6) hide show
  1. Dockerfile +3 -3
  2. README.md +8 -8
  3. docker-compose.yaml +1 -1
  4. example.py +1 -1
  5. pixi.toml +1 -1
  6. quickstart.md +5 -5
Dockerfile CHANGED
@@ -8,11 +8,11 @@ ENV TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}
8
  RUN --mount=type=cache,target=/root/.cache/pip \
9
  pip install -U pip hatchling "setuptools>=68" --root-user-action ignore
10
 
11
- COPY nemo-retriever-ocr /workspace/nemo-retriever-ocr
12
- WORKDIR /workspace/nemo-retriever-ocr
13
 
14
  # Ensure no prebuilt binaries/artifacts from the host are present
15
- RUN rm -f src/nemo_retriever_ocr_cpp/*.so || true \
16
  && rm -rf build/ dist/
17
 
18
  RUN --mount=type=cache,target=/root/.cache/pip \
 
8
  RUN --mount=type=cache,target=/root/.cache/pip \
9
  pip install -U pip hatchling "setuptools>=68" --root-user-action ignore
10
 
11
+ COPY nemotron-ocr /workspace/nemotron-ocr
12
+ WORKDIR /workspace/nemotron-ocr
13
 
14
  # Ensure no prebuilt binaries/artifacts from the host are present
15
+ RUN rm -f src/nemotron_ocr_cpp/*.so || true \
16
  && rm -rf build/ dist/
17
 
18
  RUN --mount=type=cache,target=/root/.cache/pip \
README.md CHANGED
@@ -35,7 +35,7 @@ The NeMo Retriever OCR v1 model is part of the NVIDIA NeMo Retriever collection
35
 
36
  This model is ready for commercial use.
37
 
38
- We are excited to announce the open sourcing of this commercial model. For users interested in deploying this model in production environments, it is also available via the model API in NVIDIA Inference Microservices (NIM) at [nemoretriever-ocr-v1](https://build.nvidia.com/nvidia/nemoretriever-ocr-v1).
39
 
40
  ### **License/Terms of use**
41
 
@@ -61,7 +61,7 @@ The **NeMo Retriever OCR v1** model is designed for high-accuracy and high-speed
61
 
62
  ### Release Date
63
 
64
- 10/23/2025 via https://huggingface.co/nvidia/nemoretriever-ocr-v1
65
 
66
  ### References
67
 
@@ -163,11 +163,11 @@ git lfs install
163
  ```
164
  - Using https
165
  ```
166
- git clone https://huggingface.co/nvidia/nemoretriever-ocr-v1
167
  ```
168
  - Or using ssh
169
  ```
170
- git clone git@hf.co:nvidia/nemoretriever-ocr-v1
171
  ```
172
 
173
  2. Installation
@@ -179,7 +179,7 @@ git clone git@hf.co:nvidia/nemoretriever-ocr-v1
179
  - Run the following command to install the package:
180
 
181
  ```bash
182
- cd nemo-retriever-ocr
183
  pip install hatchling
184
  pip install -v .
185
  ```
@@ -197,7 +197,7 @@ docker run --rm --gpus all nvcr.io/nvidia/pytorch:25.09-py3 nvidia-smi
197
  - From the repo root, bring up the service to run the example against the provided image `ocr-example-image.png`:
198
 
199
  ```bash
200
- docker compose run --rm nemo-retriever-ocr \
201
  bash -lc "python example.py ocr-example-input-1.png --merge-level paragraph"
202
  ```
203
 
@@ -212,7 +212,7 @@ Output is saved next to your input image as `<name>-annotated.<ext>` on the host
212
  3. Run the model using the following code:
213
 
214
  ```python
215
- from nemo_retriever_ocr.inference.pipeline import NemoRetrieverOCR
216
 
217
  ocr = NemoRetrieverOCR()
218
 
@@ -247,7 +247,7 @@ This AI model can be embedded as an Application Programming Interface (API) call
247
 
248
  ## Model Version(s):
249
 
250
- * `nemoretriever-ocr-v1`
251
 
252
  ## **Training and Evaluation Datasets:**
253
 
 
35
 
36
  This model is ready for commercial use.
37
 
38
+ We are excited to announce the open sourcing of this commercial model. For users interested in deploying this model in production environments, it is also available via the model API in NVIDIA Inference Microservices (NIM) at [nemotron-ocr-v1](https://build.nvidia.com/nvidia/nemotron-ocr-v1).
39
 
40
  ### **License/Terms of use**
41
 
 
61
 
62
  ### Release Date
63
 
64
+ 10/23/2025 via https://huggingface.co/nvidia/nemotron-ocr-v1
65
 
66
  ### References
67
 
 
163
  ```
164
  - Using https
165
  ```
166
+ git clone https://huggingface.co/nvidia/nemotron-ocr-v1
167
  ```
168
  - Or using ssh
169
  ```
170
+ git clone git@hf.co:nvidia/nemotron-ocr-v1
171
  ```
172
 
173
  2. Installation
 
179
  - Run the following command to install the package:
180
 
181
  ```bash
182
+ cd nemotron-ocr
183
  pip install hatchling
184
  pip install -v .
185
  ```
 
197
  - From the repo root, bring up the service to run the example against the provided image `ocr-example-image.png`:
198
 
199
  ```bash
200
+ docker compose run --rm nemotron-ocr \
201
  bash -lc "python example.py ocr-example-input-1.png --merge-level paragraph"
202
  ```
203
 
 
212
  3. Run the model using the following code:
213
 
214
  ```python
215
+ from nemotron_ocr.inference.pipeline import NemoRetrieverOCR
216
 
217
  ocr = NemoRetrieverOCR()
218
 
 
247
 
248
  ## Model Version(s):
249
 
250
+ * `nemotron-ocr-v1`
251
 
252
  ## **Training and Evaluation Datasets:**
253
 
docker-compose.yaml CHANGED
@@ -1,5 +1,5 @@
1
  services:
2
- nemo-retriever-ocr:
3
  build:
4
  context: .
5
  dockerfile: Dockerfile
 
1
  services:
2
+ nemotron-ocr:
3
  build:
4
  context: .
5
  dockerfile: Dockerfile
example.py CHANGED
@@ -4,7 +4,7 @@
4
 
5
  import argparse
6
 
7
- from nemo_retriever_ocr.inference.pipeline import NemoRetrieverOCR
8
 
9
 
10
  def main(image_path, merge_level, no_visualize, model_dir):
 
4
 
5
  import argparse
6
 
7
+ from nemotron_ocr.inference.pipeline import NemoRetrieverOCR
8
 
9
 
10
  def main(image_path, merge_level, no_visualize, model_dir):
pixi.toml CHANGED
@@ -1,7 +1,7 @@
1
  [workspace]
2
  authors = ["Charles Blackmon-Luca <20627856+charlesbluca@users.noreply.github.com>"]
3
  channels = ["conda-forge", "nvidia"]
4
- name = "nemo-retriever-ocr"
5
  platforms = ["linux-64"]
6
  version = "0.1.0"
7
 
 
1
  [workspace]
2
  authors = ["Charles Blackmon-Luca <20627856+charlesbluca@users.noreply.github.com>"]
3
  channels = ["conda-forge", "nvidia"]
4
+ name = "nemotron-ocr"
5
  platforms = ["linux-64"]
6
  version = "0.1.0"
7
 
quickstart.md CHANGED
@@ -14,25 +14,25 @@ Create pixi environment and enter activated shell:
14
  pixi s
15
  ```
16
 
17
- Create a virtualenv and install nemo-retriever-ocr into it via `uv`:
18
 
19
  ```bash
20
  uv venv \
21
- && uv pip install -e ./nemo-retriever-ocr -v
22
  ```
23
 
24
  Assert that OCR inference libraries can now be imported successfully:
25
 
26
  ```bash
27
- uv run python -c "import nemo_retriever_ocr; import nemo_retriever_ocr_cpp"
28
  ```
29
 
30
  ## Usage
31
 
32
- `nemo_retriever_ocr.inference.pipeline.NemoRetrieverOCR` is the main entry point for performing OCR inference; it can be used to iterate over predictions for a given input image:
33
 
34
  ```python
35
- from nemo_retriever_ocr.inference.pipeline import NemoRetrieverOCR
36
 
37
  ocr = NemoRetrieverOCR()
38
 
 
14
  pixi s
15
  ```
16
 
17
+ Create a virtualenv and install nemotron-ocr into it via `uv`:
18
 
19
  ```bash
20
  uv venv \
21
+ && uv pip install -e ./nemotron-ocr -v
22
  ```
23
 
24
  Assert that OCR inference libraries can now be imported successfully:
25
 
26
  ```bash
27
+ uv run python -c "import nemotron_ocr; import nemotron_ocr_cpp"
28
  ```
29
 
30
  ## Usage
31
 
32
+ `nemotron_ocr.inference.pipeline.NemoRetrieverOCR` is the main entry point for performing OCR inference; it can be used to iterate over predictions for a given input image:
33
 
34
  ```python
35
+ from nemotron_ocr.inference.pipeline import NemoRetrieverOCR
36
 
37
  ocr = NemoRetrieverOCR()
38