File size: 5,693 Bytes
abf93d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

from dataclasses import dataclass
from typing import Optional, NamedTuple, Union, List, Dict

from transformers import PretrainedConfig


class Resolution(NamedTuple):
    height: int
    width: int


@dataclass
class RadioResource:
    url: str
    patch_size: int
    max_resolution: int
    preferred_resolution: Resolution
    vitdet_num_windowed: Optional[int] = None
    vitdet_num_global: Optional[int] = None


RESOURCE_MAP = {
    # RADIOv2.5
    "radio_v2.5-b": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar?download=true",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=(768, 768),
        vitdet_num_global=4,
    ),
    "radio_v2.5-l": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-l_half.pth.tar?download=true",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=(768, 768),
        vitdet_num_global=4,
    ),
    "radio_v2.5-h": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h.pth.tar?download=true",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=(768, 768),
        vitdet_num_global=4,
    ),
    "radio_v2.5-h-norm": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h-norm.pth.tar?download=true",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=(768, 768),
        vitdet_num_global=4,
    ),
    "radio_v2.5-g": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-g.pth.tar?download=true",
        patch_size=14,
        max_resolution=1792,
        preferred_resolution=(896, 896),
        vitdet_num_global=8,
    ),
    # RADIO
    "radio_v2.1": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.1_bf16.pth.tar?download=true",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=Resolution(432, 432),
        vitdet_num_windowed=5,
    ),
    "radio_v2": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.pth.tar?download=true",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=Resolution(432, 432),
        vitdet_num_windowed=5,
    ),
    "radio_v1": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v1.pth.tar?download=true",
        patch_size=14,
        max_resolution=1050,
        preferred_resolution=Resolution(378, 378),
    ),
    # E-RADIO
    "e-radio_v2": RadioResource(
        "https://huggingface.co/nvidia/RADIO/resolve/main/eradio_v2.pth.tar?download=true",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=Resolution(512, 512),
    ),
    # C-RADIO
    "c-radio_v2.5-g": RadioResource(
        "https://huggingface.co/nvidia/C-RADIOv2-g/resolve/main/c-radio_v2-g_half.pth.tar",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=(768, 768),
        vitdet_num_global=8,
    ),
    "c-radio_v3-l": RadioResource(
        # NOTE: Currently, this model cannot be loaded via TorchHub. Instead, use the transformers API at https://huggingface.co/nvidia/C-RADIOv3-L
        # and accept the license terms.
        "https://huggingface.co/nvidia/C-RADIOv3-L/resolve/main/c-radio-v3_l_half.pth.tar?download=true",
        patch_size=16,
        max_resolution=2048,
        preferred_resolution=Resolution(512, 512),
    ),
}

DEFAULT_VERSION = "radio_v2.5-h"


class RADIOConfig(PretrainedConfig):
    """Pretrained Hugging Face configuration for RADIO models."""

    def __init__(
        self,
        args: Optional[dict] = None,
        version: Optional[str] = DEFAULT_VERSION,
        patch_size: Optional[int] = None,
        max_resolution: Optional[int] = None,
        preferred_resolution: Optional[Resolution] = None,
        adaptor_names: Union[str, List[str]] = None,
        adaptor_configs: Dict[str, Dict[str, int]] = None,
        vitdet_window_size: Optional[int] = None,
        feature_normalizer_config: Optional[dict] = None,
        inter_feature_normalizer_config: Optional[dict] = None,
        **kwargs,
    ):
        self.args = args
        for field in ["dtype", "amp_dtype"]:
            if self.args is not None and field in self.args:
                # Convert to a string in order to make it serializable.
                # For example for torch.float32 we will store "float32",
                # for "bfloat16" we will store "bfloat16".
                self.args[field] = str(args[field]).split(".")[-1]
        self.version = version
        resource = RESOURCE_MAP[version]
        self.patch_size = patch_size or resource.patch_size
        self.max_resolution = max_resolution or resource.max_resolution
        self.preferred_resolution = (
            preferred_resolution or resource.preferred_resolution
        )
        self.adaptor_names = adaptor_names
        self.adaptor_configs = adaptor_configs
        self.vitdet_window_size = vitdet_window_size
        self.feature_normalizer_config = feature_normalizer_config
        self.inter_feature_normalizer_config = inter_feature_normalizer_config
        super().__init__(**kwargs)