--- language: - en library_name: mlx tags: - qwen-coder - MOE - pruning - compression - mlx license: apache-2.0 name: cerebras/Qwen3-Coder-REAP-25B-A3B description: 'This model was obtained by uniformly pruning 20% of experts in Qwen3-Coder-30B-A3B-Instruct using the REAP method. ' readme: 'https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/main/README.md ' license_link: https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B/blob/main/LICENSE pipeline_tag: text-generation base_model: cerebras/Qwen3-Coder-REAP-25B-A3B --- # Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx This version of the Deckard(qx) formula uses embeddings at 6 bit, along with the head and select attention paths, leaving the rest at 5 bit. The model is quantized with group size 32(hi). It is aimed as a mid-range quant with a quality approaching q8, that would run comfortably on a smaller Mac. This is an update from the model: [Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Coder-REAP-25B-A3B-qx64-hi-mlx) that uses the base and embeddings at 4 bit. Metrics coming soon. -G This model [Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx](https://huggingface.co/nightmedia/Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx) was converted to MLX format from [cerebras/Qwen3-Coder-REAP-25B-A3B](https://huggingface.co/cerebras/Qwen3-Coder-REAP-25B-A3B) using mlx-lm version **0.28.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen3-Coder-REAP-25B-A3B-qx65x-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```