--- library_name: transformers license: mit base_model: roberta-base-openai-detector tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-openai-detector-text2sql-approach-2 results: [] --- # roberta-base-openai-detector-text2sql-approach-2 This model is a fine-tuned version of [roberta-base-openai-detector](https://huggingface.co/roberta-base-openai-detector) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5172 - Accuracy: 0.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 57 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7594 | 1.0 | 57 | 0.7179 | 0.49 | | 0.7011 | 2.0 | 114 | 0.6381 | 0.69 | | 0.6694 | 3.0 | 171 | 0.6107 | 0.68 | | 0.6091 | 4.0 | 228 | 0.5798 | 0.75 | | 0.6088 | 5.0 | 285 | 0.5503 | 0.78 | | 0.5765 | 6.0 | 342 | 0.5418 | 0.78 | | 0.5857 | 7.0 | 399 | 0.5870 | 0.72 | | 0.5793 | 8.0 | 456 | 0.5255 | 0.79 | | 0.5507 | 9.0 | 513 | 0.5220 | 0.78 | | 0.5404 | 10.0 | 570 | 0.5172 | 0.79 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu118 - Datasets 3.6.0 - Tokenizers 0.21.1