Kimi-Linear-48B-A3B-Instruct / configuration_kimi.py
zhiyuan8's picture
Upload folder using huggingface_hub
919416f verified
# coding=utf-8
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class KimiLinearConfig(PretrainedConfig):
model_type = "kimi_linear"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
model_type="kimi_linear",
vocab_size=163840,
hidden_size=4096,
head_dim=None,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
rope_theta=10000.0,
rope_scaling=None,
tie_word_embeddings=False,
moe_intermediate_size: Optional[int] = None,
moe_renormalize: bool = True,
moe_router_activation_func: str = "sigmoid",
num_experts: Optional[int] = None,
num_experts_per_token: Optional[int] = None,
num_shared_experts: int = 0,
routed_scaling_factor: float = 1.0,
first_k_dense_replace: int = 0,
moe_layer_freq: int = 1,
use_grouped_topk: bool = True,
num_expert_group: int = 1,
topk_group: int = 1,
q_lora_rank: Optional[int] = None,
kv_lora_rank: Optional[int] = None,
qk_nope_head_dim: Optional[int] = None,
qk_rope_head_dim: Optional[int] = None,
v_head_dim: Optional[int] = None,
mla_use_nope: Optional[bool] = False,
num_nextn_predict_layers: int = 0,
linear_attn_config: Optional[dict] = None,
**kwargs,
):
self.model_type = model_type
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.head_dim = (
head_dim if head_dim is not None else hidden_size // num_attention_heads
)
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.mla_use_nope = mla_use_nope
# moe config
self.num_experts = num_experts
self.num_experts_per_token = num_experts_per_token
self.moe_renormalize = moe_renormalize
self.num_shared_experts = num_shared_experts
self.routed_scaling_factor = routed_scaling_factor
self.moe_router_activation_func = moe_router_activation_func
assert self.moe_router_activation_func in ("softmax", "sigmoid")
self.moe_intermediate_size = moe_intermediate_size
self.first_k_dense_replace = first_k_dense_replace
self.moe_layer_freq = moe_layer_freq
self.use_grouped_topk = use_grouped_topk
self.num_expert_group = num_expert_group
self.topk_group = topk_group
self.num_nextn_predict_layers = num_nextn_predict_layers
if linear_attn_config is not None:
assert linear_attn_config["kda_layers"] is not None
assert linear_attn_config["full_attn_layers"] is not None
self.linear_attn_config = linear_attn_config
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
@property
def is_mla(self):
return (
self.q_lora_rank is not None
or self.kv_lora_rank is not None
or self.qk_nope_head_dim is not None
or self.qk_rope_head_dim is not None
or self.v_head_dim is not None
or self.mla_use_nope is True
)
@property
def is_moe(self):
return self.num_experts is not None
@property
def is_linear_attn(self) -> bool:
return not (
self.linear_attn_config is None
or (
isinstance(self.linear_attn_config, dict)
and self.linear_attn_config["kda_layers"] is not None
and len(self.linear_attn_config["kda_layers"]) == 0
)
)
def is_kda_layer(self, layer_idx: int):
return (
self.linear_attn_config is not None
and (layer_idx + 1) in self.linear_attn_config["kda_layers"]
)