MiniMax-M2-3bit / config.json
prince-canuma's picture
Add files using upload-large-folder tool
16b359a verified
{
"architectures": [
"MiniMaxM2ForCausalLM"
],
"attention_dropout": 0.0,
"attn_type_list": [
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
],
"bos_token_id": null,
"eos_token_id": null,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 3072,
"initializer_range": 0.02,
"intermediate_size": 1536,
"layernorm_full_attention_beta": 1.0,
"layernorm_linear_attention_beta": 1.0,
"layernorm_mlp_beta": 1.0,
"max_position_embeddings": 196608,
"mlp_intermediate_size": 8192,
"model_type": "minimax",
"mtp_transformer_layers": 1,
"num_attention_heads": 48,
"num_experts_per_tok": 8,
"num_hidden_layers": 62,
"num_key_value_heads": 8,
"num_local_experts": 256,
"num_mtp_modules": 3,
"output_router_logits": false,
"qk_norm_type": "per_layer",
"quantization": {
"group_size": 64,
"bits": 3,
"mode": "affine",
"model.layers.0.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.1.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.2.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.3.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.4.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.5.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.6.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.7.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.8.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.9.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.10.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.11.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.12.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.13.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.14.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.15.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.16.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.17.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.18.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.19.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.20.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.21.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.22.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.23.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.24.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.25.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.26.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.27.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.28.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.29.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.30.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.31.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.32.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.33.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.34.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.35.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.36.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.37.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.38.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.39.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.40.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.41.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.42.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.43.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.44.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.45.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.46.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.47.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.48.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.49.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.50.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.51.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.52.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.53.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.54.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.55.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.56.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.57.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.58.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.59.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.60.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.61.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
}
},
"quantization_config": {
"group_size": 64,
"bits": 3,
"mode": "affine",
"model.layers.0.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.1.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.2.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.3.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.4.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.5.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.6.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.7.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.8.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.9.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.10.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.11.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.12.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.13.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.14.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.15.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.16.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.17.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.18.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.19.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.20.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.21.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.22.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.23.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.24.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.25.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.26.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.27.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.28.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.29.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.30.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.31.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.32.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.33.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.34.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.35.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.36.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.37.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.38.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.39.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.40.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.41.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.42.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.43.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.44.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.45.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.46.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.47.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.48.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.49.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.50.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.51.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.52.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.53.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.54.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.55.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.56.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.57.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.58.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.59.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.60.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
},
"model.layers.61.block_sparse_moe.gate": {
"group_size": 64,
"bits": 8
}
},
"rms_norm_eps": 1e-06,
"rope_theta": 5000000,
"rotary_dim": 64,
"router_aux_loss_coef": 0.001,
"router_jitter_noise": 0.0,
"scoring_func": "sigmoid",
"shared_intermediate_size": 0,
"shared_moe_mode": "sigmoid",
"sliding_window": null,
"tie_word_embeddings": false,
"transformers_version": "4.46.1",
"use_cache": true,
"use_mtp": true,
"use_qk_norm": true,
"use_routing_bias": true,
"vocab_size": 200064
}