---
pipeline_tag: zero-shot-object-detection # Specify the task
library_name: transformers # Specify the library
language:
- en # List language for your model
license: apache-2.0 # Specify a license
datasets:
- mlfoundations/Click-100k # List datasets used for training
base_model: Qwen/Qwen3-VL-30B-A3B-Instruct
---
# 🍨 Gelato — From Data Curation to Reinforcement Learning: Building a Strong Grounding Model for Computer-Use Agents
[🍨 **Blog Post / Codebase**](https://github.com/mlfoundations/gelato) | [🖱️ **Click-100k (dataset)**](https://huggingface.co/datasets/mlfoundations/Click-100k)
We are releasing **🍨 Gelato-30B-A3B**, a state-of-the-art grounding model for GUI computer-use tasks! Gelato is trained on our open-sourced [**Click-100k**](https://huggingface.co/datasets/mlfoundations/Click-100k) dataset and achieves **63.88% accuracy on ScreenSpot-Pro**[[3](#ref-screenspot-pro)] and **67.19% / 73.40% on OS-World-G / OS-World-G (Refined)**[[4](#ref-jedi)], surpassing prior specialized computer grounding models like GTA1-32B [[5](#ref-gta1)] and much larger VLMs including Qwen3-VL-235B-A22B-Instruct [[10](#ref-qwen3vl)].
For details on data curation and training refer to our [blog post](https://huggingface.co/mlfoundations-cua-dev/Gelato-30B-A3B).
# Performance
Gelato-30B-A3B outperforms the SoTA specialized computer grounding model, GTA1-32B, and larger VLMs on the ScreenSpot-Pro and OS-World-G grounding benchmarks.
| **Model** | **Activated Size** | **ScreenSpot-Pro** | **OS-World-G** | **OS-World-G (Refined)** |
|------------|:--------------:|:------------------:|:----------------:| :----------------:|
| Qwen3-VL-30B-A3B-Instruct | 3 B | 60.5% | 61.0% | - |
| Qwen3-VL-235B-A22B-Instruct | 22 B | 62.0% | 66.7% | - |
| OpenCUA-72B | 72 B | 60.8% | 59.6% | - |
| GTA1-32B | 32 B | 63.6% | 65.2% | 72.2% |
| Gelato-30B-A3B | 3 B | **63.88%** | **69.15%** | **74.65%** |
# Inference
Below is a code snippet demonstrating how to inference the Gelato-30B-A3B model. Given an image and an instruction, we output normalized click coordinates in the range [0,1000].

```python
from transformers import Qwen3VLMoeForConditionalGeneration, AutoProcessor
import re
from PIL import Image, ImageDraw
import requests
from io import BytesIO
def extract_coordinates(raw_string):
"""
Extract the coordinates from the raw string.
Args:
raw_string: str (e.g. "(100, 200)")
Returns:
x: float (e.g. 100.0)
y: float (e.g. 200.0)
"""
try:
matches = re.findall(r"\((-?\d*\.?\d+),\s*(-?\d*\.?\d+)\)", raw_string)
return [tuple(map(int, match)) for match in matches][0]
except:
return 0,0
def visualize_prediction(img, pred_x, pred_y, img_width, img_height):
"""
Visualize the predicted coordinates on the image (high visibility).
"""
pred_x = int((pred_x * img_width) / 1000)
pred_y = int((pred_y * img_height) / 1000)
draw = ImageDraw.Draw(img, "RGBA")
r = 30
draw.ellipse(
(pred_x - r, pred_y - r, pred_x + r, pred_y + r),
outline="lime",
fill=(0, 255, 0, 90),
width=5
)
cross_len = 15
draw.line((pred_x - cross_len, pred_y, pred_x + cross_len, pred_y), fill="lime", width=5)
draw.line((pred_x, pred_y - cross_len, pred_x, pred_y + cross_len), fill="lime", width=5)
img.save("predicted_coordinates.png")
print(f"Predicted coordinates: ({pred_x}, {pred_y})")
# Load the model and processor
MODEL_PATH = "mlfoundations/Gelato-30B-A3B"
model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
MODEL_PATH,
device_map="auto",
dtype="auto"
)
processor = AutoProcessor.from_pretrained(
MODEL_PATH
)
url = "https://github.com/QwenLM/Qwen3-VL/raw/main/cookbooks/assets/computer_use/computer_use1.jpeg"
response = requests.get(url)
img = Image.open(BytesIO(response.content))
img_width, img_height = img.size
# Prepare messages
PROMPT = '''
You are an expert UI element locator. Given a GUI image and a user's element description, provide the coordinates of the specified element as a single (x,y) point. For elements with area, return the center point.
Output the coordinate pair exactly:
(x,y)
'''
PROMPT = PROMPT.strip()
INSTRUCTION = "Reload the cache."
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": PROMPT + "\n\n"},
{"type": "image", "image": img},
{"type": "text", "text": "\n" + INSTRUCTION},
],
}
]
device = next(model.parameters()).device
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
).to(device)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=32)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
# Extract the coordinates from the output text
print(f"Model output: {output_text[0]}")
pred_x, pred_y = extract_coordinates(output_text[0])
# Calculate the absolute coordinates from normalized coordinates
visualize_prediction(img, pred_x, pred_y, img_width, img_height)
```
## Citation
If you use **🍨 Gelato** in your research, please cite it as follows:
```
@misc{gelato2025,
title={Gelato — From Data Curation to Reinforcement Learning: Building a Strong Grounding Model for Computer-Use Agents},
author={Gelato Team},
year={2025},
publisher={GitHub},
howpublished={\url{https://github.com/mlfoundations/gelato}},
}
```