| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import glob | 
					
					
						
						| 
							 | 
						import math | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import re | 
					
					
						
						| 
							 | 
						from collections import OrderedDict | 
					
					
						
						| 
							 | 
						from dataclasses import dataclass | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						from deepspeed.utils import logger | 
					
					
						
						| 
							 | 
						from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, | 
					
					
						
						| 
							 | 
						                                            FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, | 
					
					
						
						| 
							 | 
						                                            FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class zero_model_state: | 
					
					
						
						| 
							 | 
						    buffers: dict() | 
					
					
						
						| 
							 | 
						    param_shapes: dict() | 
					
					
						
						| 
							 | 
						    shared_params: list | 
					
					
						
						| 
							 | 
						    ds_version: int | 
					
					
						
						| 
							 | 
						    frozen_param_shapes: dict() | 
					
					
						
						| 
							 | 
						    frozen_param_fragments: dict() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						debug = 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						device = torch.device('cpu') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def atoi(text): | 
					
					
						
						| 
							 | 
						    return int(text) if text.isdigit() else text | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def natural_keys(text): | 
					
					
						
						| 
							 | 
						    ''' | 
					
					
						
						| 
							 | 
						    alist.sort(key=natural_keys) sorts in human order | 
					
					
						
						| 
							 | 
						    http://nedbatchelder.com/blog/200712/human_sorting.html | 
					
					
						
						| 
							 | 
						    (See Toothy's implementation in the comments) | 
					
					
						
						| 
							 | 
						    ''' | 
					
					
						
						| 
							 | 
						    return [atoi(c) for c in re.split(r'(\d+)', text)] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_model_state_file(checkpoint_dir, zero_stage): | 
					
					
						
						| 
							 | 
						    if not os.path.isdir(checkpoint_dir): | 
					
					
						
						| 
							 | 
						        raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if zero_stage <= 2: | 
					
					
						
						| 
							 | 
						        file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") | 
					
					
						
						| 
							 | 
						    elif zero_stage == 3: | 
					
					
						
						| 
							 | 
						        file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not os.path.exists(file): | 
					
					
						
						| 
							 | 
						        raise FileNotFoundError(f"can't find model states file at '{file}'") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return file | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_checkpoint_files(checkpoint_dir, glob_pattern): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if len(ckpt_files) == 0: | 
					
					
						
						| 
							 | 
						        raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return ckpt_files | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_optim_files(checkpoint_dir): | 
					
					
						
						| 
							 | 
						    return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_model_state_files(checkpoint_dir): | 
					
					
						
						| 
							 | 
						    return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def parse_model_states(files): | 
					
					
						
						| 
							 | 
						    zero_model_states = [] | 
					
					
						
						| 
							 | 
						    for file in files: | 
					
					
						
						| 
							 | 
						        state_dict = torch.load(file, map_location=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if BUFFER_NAMES not in state_dict: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"{file} is not a model state checkpoint") | 
					
					
						
						| 
							 | 
						        buffer_names = state_dict[BUFFER_NAMES] | 
					
					
						
						| 
							 | 
						        if debug: | 
					
					
						
						| 
							 | 
						            print("Found buffers:", buffer_names) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} | 
					
					
						
						| 
							 | 
						        param_shapes = state_dict[PARAM_SHAPES] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        param_names = [] | 
					
					
						
						| 
							 | 
						        for s in param_shapes: | 
					
					
						
						| 
							 | 
						            for name in s.keys(): | 
					
					
						
						| 
							 | 
						                param_names.append(name) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) | 
					
					
						
						| 
							 | 
						        if frozen_param_shapes is not None: | 
					
					
						
						| 
							 | 
						            if debug: | 
					
					
						
						| 
							 | 
						                print(f"Found frozen_param_shapes: {frozen_param_shapes}") | 
					
					
						
						| 
							 | 
						            param_names += list(frozen_param_shapes.keys()) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        ds_version = state_dict.get(DS_VERSION, None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        z_model_state = zero_model_state(buffers=buffers, | 
					
					
						
						| 
							 | 
						                                         param_shapes=param_shapes, | 
					
					
						
						| 
							 | 
						                                         shared_params=shared_params, | 
					
					
						
						| 
							 | 
						                                         ds_version=ds_version, | 
					
					
						
						| 
							 | 
						                                         frozen_param_shapes=frozen_param_shapes, | 
					
					
						
						| 
							 | 
						                                         frozen_param_fragments=frozen_param_fragments) | 
					
					
						
						| 
							 | 
						        zero_model_states.append(z_model_state) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return zero_model_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def parse_optim_states(files, ds_checkpoint_dir): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    total_files = len(files) | 
					
					
						
						| 
							 | 
						    state_dicts = [] | 
					
					
						
						| 
							 | 
						    for f in files: | 
					
					
						
						| 
							 | 
						        state_dict = torch.load(f, map_location=device) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) | 
					
					
						
						| 
							 | 
						        state_dicts.append(state_dict) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: | 
					
					
						
						| 
							 | 
						        raise ValueError(f"{files[0]} is not a zero checkpoint") | 
					
					
						
						| 
							 | 
						    zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] | 
					
					
						
						| 
							 | 
						    world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if type(world_size) is list: | 
					
					
						
						| 
							 | 
						        world_size = max(world_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if world_size != total_files: | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " | 
					
					
						
						| 
							 | 
						            "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if zero_stage <= 2: | 
					
					
						
						| 
							 | 
						        fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS | 
					
					
						
						| 
							 | 
						    elif zero_stage == 3: | 
					
					
						
						| 
							 | 
						        fp32_groups_key = FP32_FLAT_GROUPS | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        raise ValueError(f"unknown zero stage {zero_stage}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if zero_stage <= 2: | 
					
					
						
						| 
							 | 
						        fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] | 
					
					
						
						| 
							 | 
						    elif zero_stage == 3: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        fp32_flat_groups = [ | 
					
					
						
						| 
							 | 
						            torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return zero_stage, world_size, fp32_flat_groups | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Returns fp32 state_dict reconstructed from ds checkpoint | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    optim_files = get_optim_files(ds_checkpoint_dir) | 
					
					
						
						| 
							 | 
						    zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) | 
					
					
						
						| 
							 | 
						    print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_files = get_model_state_files(ds_checkpoint_dir) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    zero_model_states = parse_model_states(model_files) | 
					
					
						
						| 
							 | 
						    print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if zero_stage <= 2: | 
					
					
						
						| 
							 | 
						        return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, | 
					
					
						
						| 
							 | 
						                                                          exclude_frozen_parameters) | 
					
					
						
						| 
							 | 
						    elif zero_stage == 3: | 
					
					
						
						| 
							 | 
						        return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, | 
					
					
						
						| 
							 | 
						                                                          exclude_frozen_parameters) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _zero2_merge_frozen_params(state_dict, zero_model_states): | 
					
					
						
						| 
							 | 
						    if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: | 
					
					
						
						| 
							 | 
						        return | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    frozen_param_shapes = zero_model_states[0].frozen_param_shapes | 
					
					
						
						| 
							 | 
						    frozen_param_fragments = zero_model_states[0].frozen_param_fragments | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if debug: | 
					
					
						
						| 
							 | 
						        num_elem = sum(s.numel() for s in frozen_param_shapes.values()) | 
					
					
						
						| 
							 | 
						        print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        wanted_params = len(frozen_param_shapes) | 
					
					
						
						| 
							 | 
						        wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) | 
					
					
						
						| 
							 | 
						        avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) | 
					
					
						
						| 
							 | 
						        print(f'Frozen params: Have {avail_numel} numels to process.') | 
					
					
						
						| 
							 | 
						        print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    total_params = 0 | 
					
					
						
						| 
							 | 
						    total_numel = 0 | 
					
					
						
						| 
							 | 
						    for name, shape in frozen_param_shapes.items(): | 
					
					
						
						| 
							 | 
						        total_params += 1 | 
					
					
						
						| 
							 | 
						        unpartitioned_numel = shape.numel() | 
					
					
						
						| 
							 | 
						        total_numel += unpartitioned_numel | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        state_dict[name] = frozen_param_fragments[name] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if debug: | 
					
					
						
						| 
							 | 
						            print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _has_callable(obj, fn): | 
					
					
						
						| 
							 | 
						    attr = getattr(obj, fn, None) | 
					
					
						
						| 
							 | 
						    return callable(attr) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): | 
					
					
						
						| 
							 | 
						    param_shapes = zero_model_states[0].param_shapes | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if debug: | 
					
					
						
						| 
							 | 
						        for i in range(world_size): | 
					
					
						
						| 
							 | 
						            for j in range(len(fp32_flat_groups[0])): | 
					
					
						
						| 
							 | 
						                print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    num_param_groups = len(fp32_flat_groups[0]) | 
					
					
						
						| 
							 | 
						    merged_single_partition_of_fp32_groups = [] | 
					
					
						
						| 
							 | 
						    for i in range(num_param_groups): | 
					
					
						
						| 
							 | 
						        merged_partitions = [sd[i] for sd in fp32_flat_groups] | 
					
					
						
						| 
							 | 
						        full_single_fp32_vector = torch.cat(merged_partitions, 0) | 
					
					
						
						| 
							 | 
						        merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) | 
					
					
						
						| 
							 | 
						    avail_numel = sum( | 
					
					
						
						| 
							 | 
						        [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if debug: | 
					
					
						
						| 
							 | 
						        wanted_params = sum([len(shapes) for shapes in param_shapes]) | 
					
					
						
						| 
							 | 
						        wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        print(f"Have {avail_numel} numels to process.") | 
					
					
						
						| 
							 | 
						        print(f"Need {wanted_numel} numels in {wanted_params} params.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    total_numel = 0 | 
					
					
						
						| 
							 | 
						    total_params = 0 | 
					
					
						
						| 
							 | 
						    for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): | 
					
					
						
						| 
							 | 
						        offset = 0 | 
					
					
						
						| 
							 | 
						        avail_numel = full_single_fp32_vector.numel() | 
					
					
						
						| 
							 | 
						        for name, shape in shapes.items(): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) | 
					
					
						
						| 
							 | 
						            total_numel += unpartitioned_numel | 
					
					
						
						| 
							 | 
						            total_params += 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if debug: | 
					
					
						
						| 
							 | 
						                print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") | 
					
					
						
						| 
							 | 
						            state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) | 
					
					
						
						| 
							 | 
						            offset += unpartitioned_numel | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        align_to = 2 * world_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        def zero2_align(x): | 
					
					
						
						| 
							 | 
						            return align_to * math.ceil(x / align_to) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if debug: | 
					
					
						
						| 
							 | 
						            print(f"original offset={offset}, avail_numel={avail_numel}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        offset = zero2_align(offset) | 
					
					
						
						| 
							 | 
						        avail_numel = zero2_align(avail_numel) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if debug: | 
					
					
						
						| 
							 | 
						            print(f"aligned  offset={offset}, avail_numel={avail_numel}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if offset != avail_numel: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, | 
					
					
						
						| 
							 | 
						                                               exclude_frozen_parameters): | 
					
					
						
						| 
							 | 
						    state_dict = OrderedDict() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    buffers = zero_model_states[0].buffers | 
					
					
						
						| 
							 | 
						    state_dict.update(buffers) | 
					
					
						
						| 
							 | 
						    if debug: | 
					
					
						
						| 
							 | 
						        print(f"added {len(buffers)} buffers") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not exclude_frozen_parameters: | 
					
					
						
						| 
							 | 
						        _zero2_merge_frozen_params(state_dict, zero_model_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    for pair in zero_model_states[0].shared_params: | 
					
					
						
						| 
							 | 
						        if pair[1] in state_dict: | 
					
					
						
						| 
							 | 
						            state_dict[pair[0]] = state_dict[pair[1]] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return state_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def zero3_partitioned_param_info(unpartitioned_numel, world_size): | 
					
					
						
						| 
							 | 
						    remainder = unpartitioned_numel % world_size | 
					
					
						
						| 
							 | 
						    padding_numel = (world_size - remainder) if remainder else 0 | 
					
					
						
						| 
							 | 
						    partitioned_numel = math.ceil(unpartitioned_numel / world_size) | 
					
					
						
						| 
							 | 
						    return partitioned_numel, padding_numel | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): | 
					
					
						
						| 
							 | 
						    if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: | 
					
					
						
						| 
							 | 
						        return | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if debug: | 
					
					
						
						| 
							 | 
						        for i in range(world_size): | 
					
					
						
						| 
							 | 
						            num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) | 
					
					
						
						| 
							 | 
						            print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        frozen_param_shapes = zero_model_states[0].frozen_param_shapes | 
					
					
						
						| 
							 | 
						        wanted_params = len(frozen_param_shapes) | 
					
					
						
						| 
							 | 
						        wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) | 
					
					
						
						| 
							 | 
						        avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size | 
					
					
						
						| 
							 | 
						        print(f'Frozen params: Have {avail_numel} numels to process.') | 
					
					
						
						| 
							 | 
						        print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    total_params = 0 | 
					
					
						
						| 
							 | 
						    total_numel = 0 | 
					
					
						
						| 
							 | 
						    for name, shape in zero_model_states[0].frozen_param_shapes.items(): | 
					
					
						
						| 
							 | 
						        total_params += 1 | 
					
					
						
						| 
							 | 
						        unpartitioned_numel = shape.numel() | 
					
					
						
						| 
							 | 
						        total_numel += unpartitioned_numel | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) | 
					
					
						
						| 
							 | 
						        state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if debug: | 
					
					
						
						| 
							 | 
						            print( | 
					
					
						
						| 
							 | 
						                f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): | 
					
					
						
						| 
							 | 
						    param_shapes = zero_model_states[0].param_shapes | 
					
					
						
						| 
							 | 
						    avail_numel = fp32_flat_groups[0].numel() * world_size | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    param_shapes = {k: v for d in param_shapes for k, v in d.items()} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if debug: | 
					
					
						
						| 
							 | 
						        for i in range(world_size): | 
					
					
						
						| 
							 | 
						            print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        wanted_params = len(param_shapes) | 
					
					
						
						| 
							 | 
						        wanted_numel = sum(shape.numel() for shape in param_shapes.values()) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        avail_numel = fp32_flat_groups[0].numel() * world_size | 
					
					
						
						| 
							 | 
						        print(f"Trainable params: Have {avail_numel} numels to process.") | 
					
					
						
						| 
							 | 
						        print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    offset = 0 | 
					
					
						
						| 
							 | 
						    total_numel = 0 | 
					
					
						
						| 
							 | 
						    total_params = 0 | 
					
					
						
						| 
							 | 
						    for name, shape in param_shapes.items(): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        unpartitioned_numel = shape.numel() | 
					
					
						
						| 
							 | 
						        total_numel += unpartitioned_numel | 
					
					
						
						| 
							 | 
						        total_params += 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if debug: | 
					
					
						
						| 
							 | 
						            print( | 
					
					
						
						| 
							 | 
						                f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        state_dict[name] = torch.cat( | 
					
					
						
						| 
							 | 
						            tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), | 
					
					
						
						| 
							 | 
						            0).narrow(0, 0, unpartitioned_numel).view(shape) | 
					
					
						
						| 
							 | 
						        offset += partitioned_numel | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    offset *= world_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if offset != avail_numel: | 
					
					
						
						| 
							 | 
						        raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, | 
					
					
						
						| 
							 | 
						                                               exclude_frozen_parameters): | 
					
					
						
						| 
							 | 
						    state_dict = OrderedDict() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    buffers = zero_model_states[0].buffers | 
					
					
						
						| 
							 | 
						    state_dict.update(buffers) | 
					
					
						
						| 
							 | 
						    if debug: | 
					
					
						
						| 
							 | 
						        print(f"added {len(buffers)} buffers") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not exclude_frozen_parameters: | 
					
					
						
						| 
							 | 
						        _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    for pair in zero_model_states[0].shared_params: | 
					
					
						
						| 
							 | 
						        if pair[1] in state_dict: | 
					
					
						
						| 
							 | 
						            state_dict[pair[0]] = state_dict[pair[1]] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return state_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with | 
					
					
						
						| 
							 | 
						    ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example | 
					
					
						
						| 
							 | 
						    via a model hub. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        - ``checkpoint_dir``: path to the desired checkpoint folder | 
					
					
						
						| 
							 | 
						        - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` | 
					
					
						
						| 
							 | 
						        - ``exclude_frozen_parameters``: exclude frozen parameters | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        - pytorch ``state_dict`` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Note: this approach may not work if your application doesn't have sufficient free CPU memory and | 
					
					
						
						| 
							 | 
						    you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with | 
					
					
						
						| 
							 | 
						    the checkpoint. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    A typical usage might be :: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint | 
					
					
						
						| 
							 | 
						        # do the training and checkpoint saving | 
					
					
						
						| 
							 | 
						        state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu | 
					
					
						
						| 
							 | 
						        model = model.cpu() # move to cpu | 
					
					
						
						| 
							 | 
						        model.load_state_dict(state_dict) | 
					
					
						
						| 
							 | 
						        # submit to model hub or save the model to share with others | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    In this example the ``model`` will no longer be usable in the deepspeed context of the same | 
					
					
						
						| 
							 | 
						    application. i.e. you will need to re-initialize the deepspeed engine, since | 
					
					
						
						| 
							 | 
						    ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if tag is None: | 
					
					
						
						| 
							 | 
						        latest_path = os.path.join(checkpoint_dir, 'latest') | 
					
					
						
						| 
							 | 
						        if os.path.isfile(latest_path): | 
					
					
						
						| 
							 | 
						            with open(latest_path, 'r') as fd: | 
					
					
						
						| 
							 | 
						                tag = fd.read().strip() | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"Unable to find 'latest' file at {latest_path}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not os.path.isdir(ds_checkpoint_dir): | 
					
					
						
						| 
							 | 
						        raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be | 
					
					
						
						| 
							 | 
						    loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | 
					
					
						
						| 
							 | 
						        - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) | 
					
					
						
						| 
							 | 
						        - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | 
					
					
						
						| 
							 | 
						        - ``exclude_frozen_parameters``: exclude frozen parameters | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters) | 
					
					
						
						| 
							 | 
						    print(f"Saving fp32 state dict to {output_file}") | 
					
					
						
						| 
							 | 
						    torch.save(state_dict, output_file) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    1. Put the provided model to cpu | 
					
					
						
						| 
							 | 
						    2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` | 
					
					
						
						| 
							 | 
						    3. Load it into the provided model | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        - ``model``: the model object to update | 
					
					
						
						| 
							 | 
						        - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) | 
					
					
						
						| 
							 | 
						        - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        - ``model`: modified model | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Make sure you have plenty of CPU memory available before you call this function. If you don't | 
					
					
						
						| 
							 | 
						    have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it | 
					
					
						
						| 
							 | 
						    conveniently placed for you in the checkpoint folder. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    A typical usage might be :: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint | 
					
					
						
						| 
							 | 
						        model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) | 
					
					
						
						| 
							 | 
						        # submit to model hub or save the model to share with others | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context | 
					
					
						
						| 
							 | 
						    of the same application. i.e. you will need to re-initialize the deepspeed engine, since | 
					
					
						
						| 
							 | 
						    ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    logger.info(f"Extracting fp32 weights") | 
					
					
						
						| 
							 | 
						    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    logger.info(f"Overwriting model with fp32 weights") | 
					
					
						
						| 
							 | 
						    model = model.cpu() | 
					
					
						
						| 
							 | 
						    model.load_state_dict(state_dict, strict=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    parser = argparse.ArgumentParser() | 
					
					
						
						| 
							 | 
						    parser.add_argument("checkpoint_dir", | 
					
					
						
						| 
							 | 
						                        type=str, | 
					
					
						
						| 
							 | 
						                        help="path to the desired checkpoint folder, e.g., path/checkpoint-12") | 
					
					
						
						| 
							 | 
						    parser.add_argument( | 
					
					
						
						| 
							 | 
						        "output_file", | 
					
					
						
						| 
							 | 
						        type=str, | 
					
					
						
						| 
							 | 
						        help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") | 
					
					
						
						| 
							 | 
						    parser.add_argument("-t", | 
					
					
						
						| 
							 | 
						                        "--tag", | 
					
					
						
						| 
							 | 
						                        type=str, | 
					
					
						
						| 
							 | 
						                        default=None, | 
					
					
						
						| 
							 | 
						                        help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") | 
					
					
						
						| 
							 | 
						    parser.add_argument("-d", "--debug", action='store_true', help="enable debug") | 
					
					
						
						| 
							 | 
						    args = parser.parse_args() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    debug = args.debug | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, | 
					
					
						
						| 
							 | 
						                                               args.output_file, | 
					
					
						
						| 
							 | 
						                                               tag=args.tag, | 
					
					
						
						| 
							 | 
						                                               exclude_frozen_parameters=args.exclude_frozen_parameters) | 
					
					
						
						| 
							 | 
						
 |