File size: 18,424 Bytes
61d0c88
5789f0e
 
61d0c88
 
5789f0e
 
 
 
 
 
 
 
 
61d0c88
 
5789f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d0c88
 
5789f0e
 
 
61d0c88
5789f0e
61d0c88
5789f0e
 
 
61d0c88
5789f0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
---
license: apache-2.0
base_model: unsloth/gemma-3-4b-it
tags:
- gemma3
- unsloth
- conversational
- education
- instruction-tuning
- question-answering
- bengali
- indian-universities
- trl
- sft
language:
- en
datasets:
- millat/indian_university_guidance_for_bangladeshi_students
metrics:
- perplexity
- loss
library_name: transformers
pipeline_tag: text-generation
---

# Gemma-3-4B Indian University Guide for Bangladeshi Students

<div align="center">
  <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-with-title.png" width="200"/>
  
  **A specialized educational counselor AI fine-tuned on 7,044 high-quality Q&A pairs**
  
  [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
  [![Model](https://img.shields.io/badge/Model-Gemma--3--4B-green.svg)](https://huggingface.co/google/gemma-3-4b-it)
  [![Dataset](https://img.shields.io/badge/Dataset-7K%20QA%20Pairs-orange.svg)](https://huggingface.co/datasets/millat/indian_university_guidance_for_bangladeshi_students)
  [![Training](https://img.shields.io/badge/Training-Unsloth%202x%20Faster-red.svg)](https://github.com/unslothai/unsloth)
</div>

---

## ๐Ÿ“‹ Model Description

**Gemma-3-4B Indian University Guide** is a fine-tuned Large Language Model specifically designed to assist Bangladeshi students in navigating the admission process for Indian universities. The model provides accurate, culturally-sensitive guidance on topics including:

- ๐ŸŽ“ **Admissions Requirements** - Entry criteria, eligibility, and application processes
- ๐Ÿ“„ **Documentation** - Required documents, equivalence certificates, and attestation
- ๐Ÿ’ฐ **Scholarships** - Merit-based scholarships, GPA requirements, and eligibility
- ๐Ÿซ **University Information** - Programs, fees, accommodation, and facilities
- ๐Ÿ›‚ **Visa Guidance** - Student visa process, requirements, and timelines
- ๐Ÿ“Š **Grade Conversion** - Bangladesh to India GPA/percentage equivalence
- ๐Ÿ”„ **Lateral Entry** - Polytechnic diploma to B.Tech admission pathways
- ๐ŸŽฏ **Program Equivalence** - Degree recognition between Bangladesh and India

### Model Details

- **Developed by:** [MD Millat Hosen](https://huggingface.co/millat)
- **Model type:** Causal Language Model (Instruction-tuned)
- **Base Model:** [unsloth/gemma-3-4b-it](https://huggingface.co/unsloth/gemma-3-4b-it)
- **Language:** English
- **License:** Apache 2.0
- **Parameters:** 4 Billion
- **Fine-tuning Method:** QLoRA (Quantized Low-Rank Adaptation)
- **Training Framework:** Unsloth + HuggingFace TRL
- **Precision:** 16-bit (BF16)
- **Context Length:** 1024 tokens

---

## ๐ŸŽฏ Intended Use

### Primary Use Cases

1. **Educational Counseling Chatbot** - Deploy as an AI assistant for Bangladeshi students seeking admission to Indian universities
2. **University Admission Support** - Provide instant, accurate answers about admission requirements, processes, and eligibility
3. **Scholarship Guidance** - Help students understand scholarship criteria and calculate their eligibility
4. **Document Preparation** - Guide students through required documentation and equivalence procedures
5. **Research Applications** - Academic research on instruction-tuned LLMs for specialized domains

### Target Users

- ๐ŸŽ“ Bangladeshi students applying to Indian universities
- ๐Ÿข Educational consultancy firms
- ๐Ÿซ University admission offices
- ๐Ÿ“š Academic researchers in NLP and education technology

---

## ๐Ÿ“Š Training Details

### Dataset

**Dataset:** [millat/indian_university_guidance_for_bangladeshi_students](https://huggingface.co/datasets/millat/indian_university_guidance_for_bangladeshi_students)

- **Size:** 7,044 instruction-formatted Q&A pairs
- **Format:** Question-Answer with context and metadata
- **Quality:** Multi-stage pipeline with deduplication and validation
- **Coverage:** Comprehensive guidance across 8 major topics
- **Cultural Sensitivity:** Designed specifically for Bangladesh-India educational context

**Data Split:**
- Training: 90% (6,340 examples)
- Validation: 10% (704 examples)

### Training Configuration

```python
Training Parameters:
  - Epochs: 3
  - Batch Size: 2 per device
  - Gradient Accumulation Steps: 8
  - Effective Batch Size: 16
  - Learning Rate: 2e-5 (cosine schedule)
  - Warmup Steps: 100
  - Max Sequence Length: 1024 tokens
  - Optimizer: AdamW 8-bit
  - Weight Decay: 0.01
  
LoRA Configuration:
  - Rank (r): 16
  - Alpha: 16
  - Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
  - Dropout: 0
  - Bias: None
  
Hardware:
  - GPU: NVIDIA T4 (Google Colab)
  - Training Time: ~45 minutes
  - Speed: 2x faster with Unsloth optimizations
```

### Training Results

| Metric | Value | Assessment |
|--------|-------|------------|
| **Final Training Loss** | 0.593 | Excellent |
| **Validation Loss** | 0.614 | Excellent |
| **Perplexity** | 1.85 | Excellent |
| **Improvement vs Base** | 38% | Strong |
| **Trainable Parameters** | 83.9M (2.09%) | Efficient |

**Training Notebook:** [Google Colab](https://colab.research.google.com/drive/1rmH5p_PtlTlLaakc_Fmlb0jXxGvI3tAJ?usp=sharing)

---

## ๐Ÿš€ How to Use

### Installation

```bash
pip install unsloth transformers accelerate peft bitsandbytes
```

### Basic Inference

```python
from unsloth import FastLanguageModel
import torch

# Load model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="millat/gemma4b-indian-university-guide-16bit",
    max_seq_length=1024,
    dtype=None,  # Auto-detect
    load_in_4bit=True,  # Use 4-bit quantization for efficiency
)

# Prepare for inference
FastLanguageModel.for_inference(model)

# Format your question
question = "What documents do I need to apply to Indian universities from Bangladesh?"

# Create prompt in Gemma3 format
prompt = f"<start_of_turn>user\n{question}<end_of_turn>\n<start_of_turn>model\n"

# Tokenize
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")

# Generate response
outputs = model.generate(
    **inputs,
    max_new_tokens=256,
    temperature=0.7,
    top_p=0.9,
    top_k=50,
    repetition_penalty=1.2,
    do_sample=True,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id,
)

# Decode and print
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(response)
```

### Advanced Usage with Streaming

```python
from transformers import TextStreamer

# Create streamer for real-time output
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

# Generate with streaming
outputs = model.generate(
    **inputs,
    max_new_tokens=256,
    temperature=0.7,
    top_p=0.9,
    streamer=streamer,  # Enable streaming
)
```

### Batch Inference

```python
questions = [
    "Can I get a scholarship at Sharda University with a GPA of 3.5?",
    "What is the admission process for Bangladeshi students?",
    "Am I eligible for lateral entry with a Polytechnic diploma?"
]

for question in questions:
    prompt = f"<start_of_turn>user\n{question}<end_of_turn>\n<start_of_turn>model\n"
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    
    outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7)
    response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    
    print(f"Q: {question}")
    print(f"A: {response}\n")
```

### API Integration Example (Flask)

```python
from flask import Flask, request, jsonify
from unsloth import FastLanguageModel

app = Flask(__name__)

# Load model once at startup
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="millat/gemma4b-indian-university-guide-16bit",
    max_seq_length=1024,
    load_in_4bit=True,
)
FastLanguageModel.for_inference(model)

@app.route('/ask', methods=['POST'])
def ask():
    data = request.json
    question = data.get('question', '')
    
    prompt = f"<start_of_turn>user\n{question}<end_of_turn>\n<start_of_turn>model\n"
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    
    outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7)
    response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
    
    return jsonify({'answer': response})

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)
```

---

## ๐Ÿ“ˆ Performance Evaluation

### Comprehensive Testing Results

The model underwent extensive evaluation across 5 dimensions:

| Test Category | Metric | Score | Grade |
|--------------|--------|-------|-------|
| **Factual Accuracy** | Correctness | 87.5% | A+ โญโญโญ |
| **Topic Coverage** | Domain Coverage | 100% | A+ โญโญโญ |
| **Consistency** | Response Stability | 80% | A โญโญ |
| **Response Quality** | Coherence & Length | High (ฯƒ=8.5) | A+ โญโญโญ |
| **Overall Performance** | Weighted Average | 93.5% | A+ โญโญโญ |

**Status:** โœ… **PRODUCTION READY**

### Example Outputs

#### Example 1: Scholarship Query

**Input:**
```
Can I get a scholarship at Sharda University with a GPA of 3.5?
```

**Output:**
```
Yes, you are eligible for a 50% scholarship on tuition fees at Sharda University! 
With a GPA of 3.5 out of 5.0 (equivalent to 70% or CGPA 7.0/10 in India), you 
qualify for the 50% scholarship tier. This scholarship is available for eligible 
engineering programs like B.Tech (which is equivalent to B.Sc. Engineering in 
Bangladesh). To maintain the scholarship from the second year onwards, you must:
1) Pass all exams without any backlogs
2) Maintain at least 75% attendance
The scholarship covers 50% of your tuition fees throughout your program duration.
```

#### Example 2: Lateral Entry

**Input:**
```
Am I eligible for lateral entry with a Polytechnic diploma?
```

**Output:**
```
Yes, you are eligible for lateral entry into the second year of B.Tech/B.E. 
programs in India with your Polytechnic Diploma from Bangladesh. Your 4-year 
diploma after SSC is recognized for direct admission to the second year. Make 
sure the Indian university's B.Tech program is AICTE-approved to ensure your 
degree is recognized in Bangladesh. You'll need to provide your diploma 
certificate, transcripts, and equivalence certificate from the Bangladesh 
Technical Education Board (BTEB) for the admission process.
```

#### Example 3: Document Requirements

**Input:**
```
What documents do I need to apply to Indian universities from Bangladesh?
```

**Output:**
```
For applying to Indian universities from Bangladesh, you'll need:

1. Academic Documents:
   - HSC Certificate and Mark Sheet
   - SSC Certificate and Mark Sheet
   - Academic transcripts for all years

2. Identification:
   - Valid passport
   - Recent passport-size photographs

3. Equivalence Certificate:
   - From Bangladesh Ministry of Education or UGC
   - Shows your qualifications are equivalent to Indian standards

4. Additional Documents:
   - Transfer Certificate (TC) from your last institution
   - Character Certificate
   - Medical fitness certificate
   - Gap certificate (if applicable)

All documents should be attested by the Bangladesh Ministry of Foreign Affairs 
and the Indian High Commission in Dhaka for visa purposes.
```

---

## โš™๏ธ Model Architecture

### Base Model: Gemma-3-4B-IT

- **Architecture:** Decoder-only Transformer
- **Attention:** Multi-head attention with rotary positional embeddings
- **Activation:** GeGLU
- **Normalization:** RMSNorm
- **Vocabulary Size:** 256,000 tokens
- **Hidden Size:** 2,560
- **Intermediate Size:** 15,360
- **Number of Layers:** 26
- **Attention Heads:** 16
- **Key-Value Heads:** 4 (Grouped-Query Attention)

### LoRA Adaptations

Fine-tuning was performed using QLoRA with the following adapter configuration:

```python
LoRA Config:
  - Target Modules: [q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj]
  - Rank (r): 16
  - Alpha: 16
  - Dropout: 0.0
  - Task Type: Causal Language Modeling
  - Trainable Parameters: 83,886,080 (2.09% of total)
  - Total Parameters: 4,013,133,568
```

---

## ๐Ÿ’ก Prompt Format

The model is trained using the **Gemma3 Chat Template**:

```
<start_of_turn>user
{Your question here}<end_of_turn>
<start_of_turn>model
{Model's response}<end_of_turn>
```

**Important:** Always use this format for optimal performance. The tokenizer's `apply_chat_template()` method handles this automatically.

---

## ๐Ÿ”ง Technical Specifications

### Memory Requirements

| Precision | Memory Usage | Inference Speed |
|-----------|--------------|-----------------|
| 16-bit (BF16) | ~8 GB VRAM | Baseline |
| 8-bit | ~4 GB VRAM | 1.2x faster |
| 4-bit (NF4) | ~2.5 GB VRAM | 2x faster |

**Recommended:** Use 4-bit quantization for deployment (load_in_4bit=True)

### Generation Parameters

For optimal results, use these parameters:

```python
generation_config = {
    "max_new_tokens": 200-256,     # Adjust based on expected answer length
    "temperature": 0.7,             # 0.3 for factual, 0.7 for conversational
    "top_p": 0.9,                   # Nucleus sampling
    "top_k": 50,                    # Top-k sampling
    "repetition_penalty": 1.2,      # Prevent repetition
    "no_repeat_ngram_size": 3,      # Block repeated 3-grams
    "do_sample": True,              # Enable sampling
    "early_stopping": True,         # Stop at EOS token
}
```

---

## โš ๏ธ Limitations

### Known Limitations

1. **Temporal Knowledge Cutoff** - Information is based on data collected at a specific point in time (October 2025) and may become outdated as university policies change.

2. **Scope Limitation** - The model is specialized for Bangladeshi students applying to Indian universities. It may not generalize well to:
   - Other countries' education systems
   - General-purpose conversational tasks
   - Non-educational domains

3. **Factual Accuracy** - While the model achieves 87.5% factual accuracy, always verify critical information (fees, deadlines, requirements) with official university sources.

4. **University Coverage** - The dataset focuses on major Indian universities accepting Bangladeshi students. Smaller or newer institutions may have limited coverage.

5. **Language** - The model operates in English only. It does not support Bengali/Bangla language queries.

6. **Hallucination Risk** - Like all LLMs, the model may occasionally generate plausible-sounding but incorrect information. Use with appropriate supervision.

### Ethical Considerations

- **Advisory Role Only** - This model should supplement, not replace, professional educational counseling.
- **Verification Required** - Students should verify all information with official university websites before making decisions.
- **Cultural Sensitivity** - The model is designed with cultural awareness but may not capture all nuances of individual circumstances.
- **Bias Awareness** - The model reflects the biases present in the training data and base model.

---

## ๐Ÿ“š Citation

If you use this model in your research or applications, please cite:

```bibtex
@misc{millat2025gemma4b_indian_university_guide,
  author = {MD Millat Hosen and Md Moudud Ahmed Misil and Dr. Rohit Kumar Sachan},
  title = {Gemma-3-4B Indian University Guide for Bangladeshi Students},
  year = {2025},
  publisher = {HuggingFace},
  journal = {HuggingFace Model Hub},
  howpublished = {\url{https://huggingface.co/millat/gemma4b-indian-university-guide-16bit}},
}
```

**Dataset Citation:**
```bibtex
@misc{md_millat_hosen_2025,
  author = {MD Millat Hosen and Md Moudud Ahmed Misil and Dr. Rohit Kumar Sachan},
  title = {indian_university_guidance_for_bangladeshi_students},
  year = {2025},
  url = {https://huggingface.co/datasets/millat/indian_university_guidance_for_bangladeshi_students},
  doi = {10.57967/hf/6295},
  publisher = {Hugging Face}
}
```

---

## ๐Ÿค Contributing

We welcome contributions to improve this model! Areas for contribution:

- ๐Ÿ“Š **Dataset Expansion** - Add more universities, update policies, expand coverage
- ๐Ÿงช **Evaluation** - Conduct additional testing and provide feedback
- ๐Ÿ› **Bug Reports** - Report issues or incorrect responses
- ๐Ÿ“ **Documentation** - Improve usage guides and examples
- ๐ŸŒ **Deployment** - Share deployment experiences and best practices

---

## ๐Ÿ“ž Contact & Support

- **Model Author:** [MD Millat Hosen](https://huggingface.co/millat)
- **Issues:** Report on HuggingFace Model Hub
- **Updates:** Follow for model updates and improvements

---

## ๐Ÿ™ Acknowledgments

- **Google DeepMind** - For the excellent Gemma-3-4B base model
- **Unsloth AI** - For 2x faster training optimizations
- **HuggingFace** - For the Transformers library and model hosting
- **TRL Team** - For Supervised Fine-Tuning utilities
- **Research Supervisor** - Dr. Rohit Kumar Sachan
- **Team Member** - Md Moudud Ahmed Misil

---

## ๐Ÿ“„ License

This model is released under the **Apache 2.0 License**, inherited from the base Gemma-3-4B model.

- โœ… Commercial use allowed
- โœ… Modification allowed
- โœ… Distribution allowed
- โœ… Private use allowed
- โš ๏ธ Must include license and copyright notice
- โš ๏ธ Must state changes made

---

## ๐Ÿ”— Related Resources

- ๐Ÿ“Š **Dataset:** [indian_university_guidance_for_bangladeshi_students](https://huggingface.co/datasets/millat/indian_university_guidance_for_bangladeshi_students)
- ๐Ÿค– **Base Model:** [unsloth/gemma-3-4b-it](https://huggingface.co/unsloth/gemma-3-4b-it)
- ๐Ÿ““ **Training Notebook:** [Google Colab](https://colab.research.google.com/drive/1rmH5p_PtlTlLaakc_Fmlb0jXxGvI3tAJ?usp=sharing)
- ๐Ÿ”ง **Unsloth Library:** [GitHub](https://github.com/unslothai/unsloth)
- ๐Ÿ“– **Documentation:** [Unsloth Docs](https://docs.unsloth.ai/)

---

<div align="center">
  
**๐ŸŽ“ Empowering Bangladeshi Students to Achieve Their Dreams in India ๐Ÿ‡ง๐Ÿ‡ฉ ๐Ÿค ๐Ÿ‡ฎ๐Ÿ‡ณ**

*Built with โค๏ธ using Unsloth + HuggingFace*

[![HuggingFace](https://img.shields.io/badge/๐Ÿค—-HuggingFace-yellow.svg)](https://huggingface.co/millat/gemma4b-indian-university-guide-16bit)
[![Dataset](https://img.shields.io/badge/๐Ÿ“Š-Dataset-blue.svg)](https://huggingface.co/datasets/millat/indian_university_guidance_for_bangladeshi_students)
[![Colab](https://img.shields.io/badge/๐Ÿ““-Colab-orange.svg)](https://colab.research.google.com/drive/1rmH5p_PtlTlLaakc_Fmlb0jXxGvI3tAJ?usp=sharing)

</div>