Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model Card: GPT-OSS-20B Spanish Climate Change (Civility-Conditioned)
|
| 2 |
+
|
| 3 |
+
## Model Description
|
| 4 |
+
|
| 5 |
+
This is a fine-tuned version of [gpt-oss-20b](https://huggingface.co/OpenSourceAI/gpt-oss-20b) trained on Spanish Facebook discussions about climate change with **civility conditioning**. The model learns to generate realistic Spanish social media posts while allowing users to control the civility level at inference time.
|
| 6 |
+
|
| 7 |
+
- **Model Type**: Autoregressive Language Model (Causal LM)
|
| 8 |
+
- **Base Model**: gpt-oss-20b (20 billion parameters)
|
| 9 |
+
- **Language**: Spanish
|
| 10 |
+
- **Training Objective**: Masked posting prediction with civility conditioning
|
| 11 |
+
- **License**: [Same as base model]
|
| 12 |
+
- **Model Size**: 20B parameters
|
| 13 |
+
|
| 14 |
+
## Key Features
|
| 15 |
+
|
| 16 |
+
### 1. Civility Control
|
| 17 |
+
The model can generate both civil and incivil content, controlled by a simple parameter:
|
| 18 |
+
- `[CIVILITY: civil]` → Generates respectful, constructive discourse
|
| 19 |
+
- `[CIVILITY: incivil]` → Generates content with rudeness, hate speech, or threats
|
| 20 |
+
|
| 21 |
+
### 2. Realistic Spanish Social Media Generation
|
| 22 |
+
Trained on authentic Facebook discussions about climate change in Spanish, capturing:
|
| 23 |
+
- Natural conversation patterns
|
| 24 |
+
- Topic-appropriate vocabulary
|
| 25 |
+
- Social media communication styles
|
| 26 |
+
- Diverse perspectives and argumentation patterns
|
| 27 |
+
|
| 28 |
+
### 3. Context-Aware Continuation
|
| 29 |
+
Uses masked posting prediction to generate responses that:
|
| 30 |
+
- Fit naturally within ongoing discussions
|
| 31 |
+
- Maintain topical coherence
|
| 32 |
+
- Respond appropriately to previous comments
|
| 33 |
+
- Match the conversational depth and complexity
|
| 34 |
+
|
| 35 |
+
## Training Data
|
| 36 |
+
|
| 37 |
+
### Source
|
| 38 |
+
- **Platform**: Facebook public posts
|
| 39 |
+
- **Topic**: Climate change discussions (Spanish language)
|
| 40 |
+
- **Format**: Conversation sequences with incivility annotations
|
| 41 |
+
|
| 42 |
+
### Dataset Statistics
|
| 43 |
+
- **Total Training Examples**: 5,875
|
| 44 |
+
- **Validation Examples**: 653
|
| 45 |
+
- **Civil Examples**: ~65% of dataset
|
| 46 |
+
- **Incivil Examples**: ~35% of dataset
|
| 47 |
+
|
| 48 |
+
### Incivility Annotations
|
| 49 |
+
Each post was labeled across multiple dimensions:
|
| 50 |
+
- **Impoliteness (imp)**: Rudeness, disrespect
|
| 51 |
+
- **Hate Speech/Stereotyping (hsst)**: Discriminatory language
|
| 52 |
+
- **Threats (threat)**: Threats to democratic freedoms
|
| 53 |
+
- **Negativity (neg)**: General negativity
|
| 54 |
+
- **Attack (att)**: Personal attacks
|
| 55 |
+
- **Sarcasm/Cynicism (sarcyn)**: Sarcastic or cynical tone
|
| 56 |
+
|
| 57 |
+
A post is classified as **incivil** if it has `imp ≥ 1` OR `hsst ≥ 1` OR `threat ≥ 1`.
|
| 58 |
+
|
| 59 |
+
## Training Procedure
|
| 60 |
+
|
| 61 |
+
### Hyperparameters
|
| 62 |
+
- **Epochs**: 3
|
| 63 |
+
- **Batch Size**: 2 per device
|
| 64 |
+
- **Gradient Accumulation Steps**: 8 (effective batch size: 16)
|
| 65 |
+
- **Learning Rate**: 2e-5
|
| 66 |
+
- **Warmup Steps**: 100
|
| 67 |
+
- **Weight Decay**: 0.01
|
| 68 |
+
- **Max Gradient Norm**: 1.0
|
| 69 |
+
- **Precision**: bfloat16
|
| 70 |
+
- **Max Sequence Length**: 2048 tokens
|
| 71 |
+
- **Optimizer**: AdamW
|
| 72 |
+
|
| 73 |
+
### Training Features
|
| 74 |
+
- Gradient checkpointing for memory efficiency
|
| 75 |
+
- Dynamic padding via custom data collator
|
| 76 |
+
- Loss computed only on the final response (not context or instruction)
|
| 77 |
+
- Balanced exposure to civil and incivil examples
|
| 78 |
+
- Reasoning level variation (low/medium/high) for diversity
|
| 79 |
+
|
| 80 |
+
### Infrastructure
|
| 81 |
+
- Trained on high-performance GPU cluster
|
| 82 |
+
- Model distributed across GPUs using `device_map="auto"`
|
| 83 |
+
- TensorBoard logging enabled
|
| 84 |
+
|
| 85 |
+
## Usage
|
| 86 |
+
|
| 87 |
+
### Basic Example
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
import torch
|
| 91 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 92 |
+
|
| 93 |
+
# Load model
|
| 94 |
+
model_path = "maxpe/gpt-oss-spanish-climate-conditioned"
|
| 95 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 96 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 97 |
+
model_path,
|
| 98 |
+
torch_dtype=torch.bfloat16,
|
| 99 |
+
device_map="auto"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Format prompt with civility control
|
| 103 |
+
def format_prompt(context: str, civility_type: str = "civil") -> str:
|
| 104 |
+
if civility_type == "civil":
|
| 105 |
+
civility_instruction = "Esta publicación debe ser civil y respetuosa, sin elementos de descortesía, discurso de odio o amenazas."
|
| 106 |
+
else:
|
| 107 |
+
civility_instruction = "Esta publicación debe contener elementos de incivilidad (descortesía, discurso de odio, o amenazas)."
|
| 108 |
+
|
| 109 |
+
instruction = f"""[CIVILITY: {civility_type}]
|
| 110 |
+
|
| 111 |
+
Necesitas escribir una respuesta de Facebook que continúe esta discusión sobre cambio climático. {civility_instruction}
|
| 112 |
+
|
| 113 |
+
Aquí está el hilo de conversación:
|
| 114 |
+
|
| 115 |
+
{context}"""
|
| 116 |
+
|
| 117 |
+
system_message = """<|start|>system<|message|>Eres un asistente de IA que participa en discusiones de Facebook sobre cambio climático en español. Tu tarea es generar publicaciones y comentarios que reflejen el tono y estilo de las conversaciones reales. Puedes generar contenido civil o incivil según se especifique en el parámetro [CIVILITY].
|
| 118 |
+
|
| 119 |
+
Reasoning: medium
|
| 120 |
+
|
| 121 |
+
# Valid channels: analysis, final<|end|>"""
|
| 122 |
+
|
| 123 |
+
user_message = f"""<|start|>user<|message|>{instruction}<|end|>"""
|
| 124 |
+
assistant_start = """<|start|>assistant<|message|><|start|>final<|message|>"""
|
| 125 |
+
|
| 126 |
+
return f"{system_message}\n\n{user_message}\n\n{assistant_start}"
|
| 127 |
+
|
| 128 |
+
# Generate civil response
|
| 129 |
+
context = """**[Publicación Original]**
|
| 130 |
+
El gobierno debe prohibir los vehículos diésel inmediatamente.
|
| 131 |
+
|
| 132 |
+
**[Respuesta 1]**
|
| 133 |
+
Estoy de acuerdo, la calidad del aire es terrible."""
|
| 134 |
+
|
| 135 |
+
prompt = format_prompt(context, civility_type="civil")
|
| 136 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1536)
|
| 137 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 138 |
+
|
| 139 |
+
outputs = model.generate(
|
| 140 |
+
**inputs,
|
| 141 |
+
max_new_tokens=256,
|
| 142 |
+
temperature=0.8,
|
| 143 |
+
top_p=0.92,
|
| 144 |
+
top_k=50,
|
| 145 |
+
repetition_penalty=1.2,
|
| 146 |
+
do_sample=True,
|
| 147 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 151 |
+
# Extract text between <|start|>final<|message|> and <|end|>
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
### Quick Testing
|
| 155 |
+
|
| 156 |
+
Use the included test script:
|
| 157 |
+
```bash
|
| 158 |
+
# Run pre-built test scenarios
|
| 159 |
+
python test_spanish_conditioned_model.py
|
| 160 |
+
|
| 161 |
+
# Interactive mode
|
| 162 |
+
python test_spanish_conditioned_model.py --interactive
|
| 163 |
+
|
| 164 |
+
# Adjust generation parameters
|
| 165 |
+
python test_spanish_conditioned_model.py --temperature 0.9 --max_new_tokens 250
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
## Generation Parameters
|
| 169 |
+
|
| 170 |
+
Recommended settings based on testing:
|
| 171 |
+
- **max_new_tokens**: 256 (for typical social media posts)
|
| 172 |
+
- **temperature**: 0.8 (balance between creativity and coherence)
|
| 173 |
+
- **top_p**: 0.92 (nucleus sampling)
|
| 174 |
+
- **top_k**: 50 (top-k sampling)
|
| 175 |
+
- **repetition_penalty**: 1.2 (avoid repetitive text)
|
| 176 |
+
- **do_sample**: True (enable sampling for diversity)
|
| 177 |
+
|
| 178 |
+
## Model Capabilities
|
| 179 |
+
|
| 180 |
+
### What the Model Does Well
|
| 181 |
+
|
| 182 |
+
✅ Generate natural-sounding Spanish social media posts about climate change
|
| 183 |
+
|
| 184 |
+
✅ Control civility level via simple parameter switch
|
| 185 |
+
|
| 186 |
+
✅ Continue conversations with contextual awareness
|
| 187 |
+
|
| 188 |
+
✅ Maintain topical coherence in climate discussions
|
| 189 |
+
|
| 190 |
+
✅ Produce varied responses across different conversation contexts
|
| 191 |
+
|
| 192 |
+
✅ Reflect authentic social media communication patterns
|
| 193 |
+
|
| 194 |
+
### Limitations
|
| 195 |
+
|
| 196 |
+
⚠️ Trained only on Facebook data (may not generalize perfectly to Twitter, Reddit, etc.)
|
| 197 |
+
|
| 198 |
+
⚠️ Climate change domain-specific (not general-purpose Spanish generation)
|
| 199 |
+
|
| 200 |
+
⚠️ Incivil content reflects training data patterns (may not cover all forms of toxicity)
|
| 201 |
+
|
| 202 |
+
⚠️ No explicit fact-checking or accuracy verification
|
| 203 |
+
|
| 204 |
+
⚠️ May occasionally generate biased or controversial viewpoints from training data
|
| 205 |
+
|
| 206 |
+
## Intended Use Cases
|
| 207 |
+
|
| 208 |
+
### Research Applications (Recommended)
|
| 209 |
+
- **Discourse Analysis**: Study patterns of civil vs incivil climate discourse
|
| 210 |
+
- **Content Moderation**: Generate training data for toxicity detection systems
|
| 211 |
+
- **Counter-Speech Research**: Create civil responses to incivil content
|
| 212 |
+
- **Polarization Studies**: Analyze dynamics of climate change discussions
|
| 213 |
+
- **Data Augmentation**: Expand datasets with realistic synthetic examples
|
| 214 |
+
- **Educational Tools**: Demonstrate effects of incivility in online discussions
|
| 215 |
+
|
| 216 |
+
### Out-of-Scope Uses
|
| 217 |
+
|
| 218 |
+
❌ Deploying to generate actual social media content at scale
|
| 219 |
+
|
| 220 |
+
❌ Creating content intended to harass, mislead, or manipulate
|
| 221 |
+
|
| 222 |
+
❌ Generating incivil content for malicious purposes
|
| 223 |
+
|
| 224 |
+
❌ Using as a factual information source about climate science
|
| 225 |
+
|
| 226 |
+
## Ethical Considerations
|
| 227 |
+
|
| 228 |
+
### Incivil Content Generation
|
| 229 |
+
This model can generate incivil content including rudeness, hate speech, and threats. This capability is designed **exclusively for research purposes**:
|
| 230 |
+
- Understanding and mitigating online toxicity
|
| 231 |
+
- Training content moderation systems
|
| 232 |
+
- Studying polarization and discourse patterns
|
| 233 |
+
- Developing counter-speech interventions
|
| 234 |
+
|
| 235 |
+
**Users must ensure responsible use** and not deploy this model to create harmful content in real online environments.
|
| 236 |
+
|
| 237 |
+
### Bias and Fairness
|
| 238 |
+
- The model reflects biases present in Spanish Facebook climate discussions
|
| 239 |
+
- Training data may contain controversial or fringe perspectives
|
| 240 |
+
- Generated content should not be treated as factual or representative of consensus views
|
| 241 |
+
- Researchers should be aware of potential demographic, political, and ideological biases
|
| 242 |
+
|
| 243 |
+
### Privacy
|
| 244 |
+
- Trained on public Facebook posts
|
| 245 |
+
- No personally identifiable information (PII) should be present in outputs
|
| 246 |
+
- Users should verify generated content doesn't inadvertently reproduce private information
|
| 247 |
+
|
| 248 |
+
## Evaluation
|
| 249 |
+
|
| 250 |
+
### Training Metrics
|
| 251 |
+
- **Final Training Loss**: [See train_results.json]
|
| 252 |
+
- **Final Validation Loss**: [See eval_results.json]
|
| 253 |
+
- **Best Checkpoint**: Selected based on lowest validation loss
|
| 254 |
+
|
| 255 |
+
### Qualitative Assessment
|
| 256 |
+
The model successfully:
|
| 257 |
+
- Generates fluent Spanish text
|
| 258 |
+
- Switches between civil and incivil tones based on the civility parameter
|
| 259 |
+
- Maintains relevance to climate change topics
|
| 260 |
+
- Produces contextually appropriate responses
|
| 261 |
+
|
| 262 |
+
### Recommended Validation
|
| 263 |
+
Users should:
|
| 264 |
+
- Manually inspect generated outputs for quality and appropriateness
|
| 265 |
+
- Validate factual claims if using for educational purposes
|
| 266 |
+
- Check for unintended biases or problematic content
|
| 267 |
+
- Test across diverse conversation contexts
|
| 268 |
+
|
| 269 |
+
## Technical Specifications
|
| 270 |
+
|
| 271 |
+
### Model Architecture
|
| 272 |
+
- **Base**: gpt-oss-20b (20B parameter decoder-only transformer)
|
| 273 |
+
- **Format**: Harmony conversation format (OpenAI-style)
|
| 274 |
+
- **Channels**: analysis, final (model uses structured reasoning)
|
| 275 |
+
- **Vocabulary**: [From tokenizer - includes Spanish tokens]
|
| 276 |
+
|
| 277 |
+
### Input Format
|
| 278 |
+
Uses structured prompt with:
|
| 279 |
+
1. System message (defines model role and capabilities)
|
| 280 |
+
2. User instruction (includes `[CIVILITY: civil|incivil]` parameter)
|
| 281 |
+
3. Conversation context (previous posts in thread)
|
| 282 |
+
4. Assistant prefix (triggers generation)
|
| 283 |
+
|
| 284 |
+
### Output Format
|
| 285 |
+
Model generates:
|
| 286 |
+
1. **Analysis channel** (optional): Internal reasoning about the task
|
| 287 |
+
2. **Final channel**: The actual social media post response
|
| 288 |
+
|
| 289 |
+
**Recommendation**: Skip directly to final channel at inference using `<|start|>final<|message|>` prefix.
|
| 290 |
+
|
| 291 |
+
### Special Tokens
|
| 292 |
+
- `<|start|>`, `<|end|>`: Conversation structure markers
|
| 293 |
+
- `<|message|>`: Message content delimiter
|
| 294 |
+
- Standard tokenizer special tokens (BOS, EOS, PAD)
|
| 295 |
+
|
| 296 |
+
## Files and Artifacts
|
| 297 |
+
|
| 298 |
+
### Model Files
|
| 299 |
+
- `model-*.safetensors`: Model weights (9 shards)
|
| 300 |
+
- `model.safetensors.index.json`: Weight shard index
|
| 301 |
+
- `config.json`: Model configuration
|
| 302 |
+
- `generation_config.json`: Default generation settings
|
| 303 |
+
|
| 304 |
+
### Tokenizer Files
|
| 305 |
+
- `tokenizer.json`: Tokenizer vocabulary and rules
|
| 306 |
+
- `tokenizer_config.json`: Tokenizer configuration
|
| 307 |
+
- `special_tokens_map.json`: Special token mappings
|
| 308 |
+
- `chat_template.jinja`: Chat template (if applicable)
|
| 309 |
+
|
| 310 |
+
### Training Files
|
| 311 |
+
- `training_args.bin`: Complete training arguments
|
| 312 |
+
- `train_results.json`: Final training metrics
|
| 313 |
+
- `eval_results.json`: Final evaluation metrics
|
| 314 |
+
- `all_results.json`: Combined results
|
| 315 |
+
- `checkpoint-*/`: Training checkpoints (600, 1000, 1104)
|
| 316 |
+
- `logs/`: TensorBoard training logs
|
| 317 |
+
|
| 318 |
+
## Citation
|
| 319 |
+
|
| 320 |
+
If you use this model in your research, please cite:
|
| 321 |
+
|
| 322 |
+
```bibtex
|
| 323 |
+
@misc{gpt-oss-spanish-climate-conditioned,
|
| 324 |
+
title={GPT-OSS-20B Spanish Climate Change Model with Civility Conditioning},
|
| 325 |
+
author={Max Pellert},
|
| 326 |
+
institution={Barcelona Supercomputing Center (BSC)},
|
| 327 |
+
year={2025},
|
| 328 |
+
note={Fine-tuned on Spanish Facebook climate discussions}
|
| 329 |
+
}
|
| 330 |
+
```
|
| 331 |
+
|
| 332 |
+
## Acknowledgments
|
| 333 |
+
|
| 334 |
+
- **Base Model**: gpt-oss-20b by OpenSourceAI
|
| 335 |
+
- **Framework**: Hugging Face Transformers
|
| 336 |
+
- **Data Source**: Spanish Facebook public climate change discussions
|
| 337 |
+
- **Annotation Framework**: Multi-dimensional incivility labeling scheme
|
| 338 |
+
|
| 339 |
+
## Version History
|
| 340 |
+
|
| 341 |
+
- **v1.0** (2025-11): Initial release
|
| 342 |
+
- 5,875 training examples
|
| 343 |
+
- 3 epochs
|
| 344 |
+
- Civility-conditioned generation
|
| 345 |
+
- Checkpoint 1104 (best validation loss)
|
| 346 |
+
|
| 347 |
+
## Additional Resources
|
| 348 |
+
|
| 349 |
+
- **Test Script**: `test_spanish_conditioned_model.py` - Run inference tests with various scenarios
|
| 350 |
+
- **Training Script**: `finetune_spanish_conditioned.py` - Complete training configuration
|
| 351 |
+
- **Dataset Creation**: `create_spanish_conditioned_more_sequences.py` - Dataset preparation pipeline (extracts 20 sequences per thread vs 3 in original version)
|