Add Robotics tag and metadata
Browse filesHi! I'm VB from Hugging Face. Congratulations on your model! I'm opening a quick PR to update the model card to add Robotics metadata.
This PR adds standard Robotics metadata and base model information:
- Added 'Robotics' to tags
- Set pipeline_tag to 'robotics'
- Added 'smolvla' as base_model
These changes help improve discoverability and provide better model lineage information.
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: lerobot/smolvla_base
|
3 |
+
library_name: lerobot
|
4 |
+
license: apache-2.0
|
5 |
+
model_name: smolvla
|
6 |
+
pipeline_tag: robotics
|
7 |
+
tags:
|
8 |
+
- robotics
|
9 |
+
- smolvla
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for smolvla_finetune_hand2
|
13 |
+
|
14 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
15 |
+
|
16 |
+
[SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
|
17 |
+
|
18 |
+
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
|
19 |
+
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
|
20 |
+
|
21 |
+
---
|
22 |
+
|
23 |
+
## How to Get Started with the Model
|
24 |
+
|
25 |
+
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
|
26 |
+
Below is the short version on how to train and run inference/eval:
|
27 |
+
|
28 |
+
### Train from scratch
|
29 |
+
|
30 |
+
```bash
|
31 |
+
python lerobot/scripts/train.py \
|
32 |
+
--dataset.repo_id=<user_or_org>/<dataset> \
|
33 |
+
--policy.type=act \
|
34 |
+
--output_dir=outputs/train/<desired_policy_repo_id> \
|
35 |
+
--job_name=lerobot_training \
|
36 |
+
--policy.device=cuda \
|
37 |
+
--policy.repo_id=<user_or_org>/<desired_policy_repo_id> \
|
38 |
+
--wandb.enable=true
|
39 |
+
```
|
40 |
+
|
41 |
+
*Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.*
|
42 |
+
|
43 |
+
### Evaluate the policy
|
44 |
+
|
45 |
+
```bash
|
46 |
+
python -m lerobot.record \
|
47 |
+
--robot.type=so100_follower \
|
48 |
+
--dataset.repo_id=<user_or_org>/eval_<dataset> \
|
49 |
+
--policy.path=<user_or_org>/<desired_policy_repo_id> \
|
50 |
+
--episodes=10
|
51 |
+
```
|
52 |
+
|
53 |
+
Prefix the dataset repo with **eval_** and supply `--policy.path` pointing to a local or hub checkpoint.
|
54 |
+
|
55 |
+
---
|