Upload modeling_mulan.py with huggingface_hub
Browse files- modeling_mulan.py +229 -0
modeling_mulan.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 LY Corporation
|
| 2 |
+
# ported from https://huggingface.co/line-corporation/clip-japanese-base/blob/main/modeling_clyp.py
|
| 3 |
+
from typing import Any, Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from sentence_transformers import SentenceTransformer
|
| 9 |
+
from torch.nn.modules.utils import _pair
|
| 10 |
+
from transformers import PreTrainedModel
|
| 11 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
| 12 |
+
|
| 13 |
+
from .configuration_mulan import (
|
| 14 |
+
JapaneseMuLanConfig,
|
| 15 |
+
JapaneseMuLanMusicEncoderConfig,
|
| 16 |
+
JapaneseMuLanTextEncoderConfig,
|
| 17 |
+
)
|
| 18 |
+
from .modeling_ast import (
|
| 19 |
+
AudioSpectrogramTransformer,
|
| 20 |
+
HeadTokenAggregator,
|
| 21 |
+
PositionalPatchEmbedding,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class MuLanPreTrainedModel(PreTrainedModel):
|
| 26 |
+
config_class = JapaneseMuLanConfig
|
| 27 |
+
|
| 28 |
+
def __init__(self, *args, **kwargs) -> None:
|
| 29 |
+
super().__init__(*args, **kwargs)
|
| 30 |
+
|
| 31 |
+
def _init_weights(self, module: Any) -> None:
|
| 32 |
+
pass
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class MuLanModel(MuLanPreTrainedModel):
|
| 36 |
+
def __init__(self, config: JapaneseMuLanConfig) -> None:
|
| 37 |
+
super().__init__(config)
|
| 38 |
+
|
| 39 |
+
self.music_encoder = create_music_encoder(config.music_encoder_config)
|
| 40 |
+
self.text_encoder = create_text_encoder(config.text_encoder_config)
|
| 41 |
+
|
| 42 |
+
def get_music_features(
|
| 43 |
+
self, spectrogram: torch.Tensor, batch_mean: bool = True
|
| 44 |
+
) -> torch.Tensor:
|
| 45 |
+
if batch_mean is None:
|
| 46 |
+
if self.training:
|
| 47 |
+
batch_mean = False
|
| 48 |
+
else:
|
| 49 |
+
batch_mean = True
|
| 50 |
+
|
| 51 |
+
music_embedding = self.music_encoder(spectrogram, batch_mean=batch_mean)
|
| 52 |
+
|
| 53 |
+
return music_embedding
|
| 54 |
+
|
| 55 |
+
def get_text_features(
|
| 56 |
+
self,
|
| 57 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 58 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 59 |
+
) -> torch.Tensor:
|
| 60 |
+
text_embedding = self.text_encoder(
|
| 61 |
+
{
|
| 62 |
+
"input_ids": input_ids,
|
| 63 |
+
"attention_mask": attention_mask,
|
| 64 |
+
},
|
| 65 |
+
batch_mean=False,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
return text_embedding
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class ModalEncoderWrapper(nn.Module):
|
| 72 |
+
"""Wrapper class of modal tower."""
|
| 73 |
+
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
backbone: nn.Module,
|
| 77 |
+
out_channels: int,
|
| 78 |
+
hidden_channels: Optional[int] = None,
|
| 79 |
+
freeze_backbone: bool = False,
|
| 80 |
+
) -> None:
|
| 81 |
+
super().__init__()
|
| 82 |
+
|
| 83 |
+
self.backbone = backbone
|
| 84 |
+
|
| 85 |
+
if hidden_channels is None:
|
| 86 |
+
if isinstance(backbone, AudioSpectrogramTransformer):
|
| 87 |
+
backbone: AudioSpectrogramTransformer
|
| 88 |
+
hidden_channels = backbone.embedding.embedding_dim
|
| 89 |
+
elif isinstance(backbone, SentenceTransformer):
|
| 90 |
+
backbone: SentenceTransformer
|
| 91 |
+
hidden_channels = backbone[-1].word_embedding_dimension
|
| 92 |
+
else:
|
| 93 |
+
raise NotImplementedError(
|
| 94 |
+
f"{type(backbone)} is not supported as backbone network."
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
self.linear = nn.Linear(hidden_channels, out_channels)
|
| 98 |
+
|
| 99 |
+
self.freeze_backbone = freeze_backbone
|
| 100 |
+
|
| 101 |
+
if self.freeze_backbone:
|
| 102 |
+
for p in self.backbone.parameters():
|
| 103 |
+
p.requires_grad = False
|
| 104 |
+
|
| 105 |
+
self.out_channels = out_channels
|
| 106 |
+
|
| 107 |
+
def forward(self, *args, batch_mean: bool = None, **kwargs) -> torch.Tensor:
|
| 108 |
+
"""Forward pass of tower wrapper.
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
args (tuple): Positional arguments given to backbone.
|
| 112 |
+
kwargs (dict): Keyword arguments given to backbone.
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
torch.Tensor: Embedding of shape (*, out_channels).
|
| 116 |
+
|
| 117 |
+
"""
|
| 118 |
+
embed = self.backbone(*args, **kwargs)
|
| 119 |
+
|
| 120 |
+
if isinstance(self.backbone, SentenceTransformer):
|
| 121 |
+
if isinstance(embed, (dict, BatchEncoding)):
|
| 122 |
+
embed = embed["sentence_embedding"]
|
| 123 |
+
else:
|
| 124 |
+
raise ValueError(
|
| 125 |
+
f"Invalid type {type(embed)} is detected as sentence transformer output."
|
| 126 |
+
)
|
| 127 |
+
else:
|
| 128 |
+
assert isinstance(embed, torch.Tensor), (
|
| 129 |
+
f"Invalid type {type(embed)} is detected."
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
x = self.linear(embed)
|
| 133 |
+
output = F.normalize(x, p=2, dim=-1)
|
| 134 |
+
|
| 135 |
+
if self.training:
|
| 136 |
+
assert not batch_mean
|
| 137 |
+
else:
|
| 138 |
+
if batch_mean is None:
|
| 139 |
+
batch_mean = False
|
| 140 |
+
|
| 141 |
+
if batch_mean:
|
| 142 |
+
output = output.mean(dim=0, keepdim=True)
|
| 143 |
+
|
| 144 |
+
return output
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class MusicEncoder(ModalEncoderWrapper):
|
| 148 |
+
"""Alias of ModalEncoderWrapper for music modal."""
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class TextEncoder(ModalEncoderWrapper):
|
| 152 |
+
"""Alias of ModalEncoderWrapper for text modal."""
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def create_music_encoder(config: JapaneseMuLanMusicEncoderConfig) -> MusicEncoder:
|
| 156 |
+
stride = _pair(config.stride)
|
| 157 |
+
n_bins = config.n_bins
|
| 158 |
+
n_frames = config.n_pretrained_frames
|
| 159 |
+
model_name = config.model_name
|
| 160 |
+
out_channels = config.out_channels
|
| 161 |
+
|
| 162 |
+
ast_prefix = "ast-"
|
| 163 |
+
|
| 164 |
+
if model_name.startswith(ast_prefix):
|
| 165 |
+
model_size = model_name[len(ast_prefix) :]
|
| 166 |
+
|
| 167 |
+
assert model_size == "base384", "Only base384 is supported as model_size."
|
| 168 |
+
|
| 169 |
+
kernel_size = (16, 16)
|
| 170 |
+
embedding_dim = 768
|
| 171 |
+
nhead = 12
|
| 172 |
+
dim_feedforward = 3072
|
| 173 |
+
activation = "gelu"
|
| 174 |
+
num_layers = 12
|
| 175 |
+
layer_norm_eps = 1e-6
|
| 176 |
+
|
| 177 |
+
embedding = PositionalPatchEmbedding(
|
| 178 |
+
embedding_dim=embedding_dim,
|
| 179 |
+
kernel_size=kernel_size,
|
| 180 |
+
stride=stride,
|
| 181 |
+
insert_cls_token=True,
|
| 182 |
+
insert_dist_token=True,
|
| 183 |
+
n_bins=n_bins,
|
| 184 |
+
n_frames=n_frames,
|
| 185 |
+
)
|
| 186 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
| 187 |
+
d_model=embedding_dim,
|
| 188 |
+
nhead=nhead,
|
| 189 |
+
dim_feedforward=dim_feedforward,
|
| 190 |
+
activation=activation,
|
| 191 |
+
batch_first=True,
|
| 192 |
+
norm_first=True,
|
| 193 |
+
layer_norm_eps=layer_norm_eps,
|
| 194 |
+
)
|
| 195 |
+
norm = nn.LayerNorm(embedding_dim, eps=layer_norm_eps)
|
| 196 |
+
backbone = nn.TransformerEncoder(
|
| 197 |
+
encoder_layer, num_layers=num_layers, norm=norm
|
| 198 |
+
)
|
| 199 |
+
aggregator = HeadTokenAggregator(position=0)
|
| 200 |
+
backbone = AudioSpectrogramTransformer(
|
| 201 |
+
embedding,
|
| 202 |
+
backbone,
|
| 203 |
+
aggregator=aggregator,
|
| 204 |
+
)
|
| 205 |
+
else:
|
| 206 |
+
raise NotImplementedError(
|
| 207 |
+
f"{model_name} is not supported as model_name of MusicEncoder."
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
return MusicEncoder(backbone, out_channels)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def create_text_encoder(config: JapaneseMuLanTextEncoderConfig) -> TextEncoder:
|
| 214 |
+
model_name = config.model_name
|
| 215 |
+
out_channels = config.out_channels
|
| 216 |
+
|
| 217 |
+
if model_name == "pkshatech/GLuCoSE-base-ja":
|
| 218 |
+
# NOTE: hack to avoid meta tensor error
|
| 219 |
+
backbone = SentenceTransformer(
|
| 220 |
+
model_name_or_path=model_name,
|
| 221 |
+
device="meta",
|
| 222 |
+
)
|
| 223 |
+
backbone.to_empty(device="cpu")
|
| 224 |
+
else:
|
| 225 |
+
raise NotImplementedError(
|
| 226 |
+
f"{model_name} is not supported as model_name of TextEncoder."
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
return TextEncoder(backbone, out_channels)
|