File size: 1,983 Bytes
4115a7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import streamlit as st
import pandas as pd
import numpy as np
import tensorflow as tf
import joblib
@st.cache_resource
def load_model():
return tf.keras.models.load_model("recommender_model.keras")
@st.cache_data
def load_assets():
df_movies = pd.read_csv("movies.csv")
user_map, movie_map = joblib.load("encodings.pkl")
return df_movies, user_map, movie_map
model = load_model()
movies_df, user2idx, movie2idx = load_assets()
reverse_movie_map = {v: k for k, v in movie2idx.items()}
st.title("TensorFlow Movie Recommender")
st.write("Select some movies you've liked to get recommendations:")
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
movie_choices = [movie_titles[mid] for mid in movie2idx.keys() if mid in movie_titles]
selected_titles = st.multiselect("Liked movies", sorted(movie_choices))
user_ratings = {}
for title in selected_titles:
movie_id = [k for k, v in movie_titles.items() if v == title][0]
user_ratings[movie_id] = 5.0
if st.button("Get Recommendations"):
if not user_ratings:
st.warning("Please select at least one movie.")
else:
liked_indices = [movie2idx[m] for m in user_ratings if m in movie2idx]
avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
all_movie_indices = tf.range(len(movie2idx))
movie_embeddings = model.layers[3](all_movie_indices)
scores = tf.reduce_sum(avg_embedding * movie_embeddings, axis=1).numpy()
top_indices = np.argsort(scores)[::-1]
recommended = []
for idx in top_indices:
mid = reverse_movie_map[idx]
if mid not in user_ratings and mid in movie_titles:
recommended.append((movie_titles[mid], scores[idx]))
if len(recommended) >= 10:
break
st.subheader("Top Recommendations")
for title, score in recommended:
st.write(f"{title} — Score: {score:.3f}")
|