File size: 12,221 Bytes
4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed fac0887 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 47fb761 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 59a5c2a f2f5eed 59a5c2a 4805443 59a5c2a f2f5eed 4805443 f2f5eed 4805443 59a5c2a f2f5eed 59a5c2a f2f5eed 59a5c2a f2f5eed 4805443 59a5c2a 4805443 f2f5eed 4805443 f2f5eed fac0887 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 4805443 f2f5eed 47fb761 fac0887 f2f5eed fac0887 f2f5eed fac0887 f2f5eed fac0887 f2f5eed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from snac import SNAC
import logging
import json
import base64
import io
import wave
from threading import Thread
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class EndpointHandler:
def __init__(self, path=""):
logger.info("Initializing Orpheus TTS handler")
# Load the Orpheus model and tokenizer
self.model_name = "hypaai/Hypa_Orpheus-3b-0.1-ft-unsloth-merged_16bit"
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16
)
# Move model to GPU if available
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
logger.info(f"Model loaded on {self.device}")
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
logger.info("Tokenizer loaded")
# Load SNAC model for audio decoding
try:
self.snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
self.snac_model.to(self.device)
logger.info("SNAC model loaded")
except Exception as e:
logger.error(f"Error loading SNAC: {str(e)}")
raise
# Special tokens
self.start_token = torch.tensor([[128259]], dtype=torch.int64)
self.end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
self.start_audio_token = 128257
self.end_audio_token = 128258
self._warmed_up = False
logger.info("Handler initialization complete")
def preprocess(self, data):
"""Preprocess input data before inference."""
logger.info(f"Preprocessing data: {type(data)}")
# Handle health check
if data == "ping" or (isinstance(data, dict) and data.get("inputs") == "ping"):
return {"health_check": True}
if isinstance(data, dict) and "inputs" in data:
text = data["inputs"]
parameters = data.get("parameters", {})
else:
text = data
parameters = {}
# Extract parameters
voice = parameters.get("voice", "tara")
temperature = float(parameters.get("temperature", 0.6))
top_p = float(parameters.get("top_p", 0.95))
max_new_tokens = int(parameters.get("max_new_tokens", 1200))
repetition_penalty = float(parameters.get("repetition_penalty", 1.1))
stream = parameters.get("stream", False) # Check for stream parameter
prompt = f"{voice}: {text}"
logger.info(f"Formatted prompt with voice {voice}")
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
modified_input_ids = torch.cat([self.start_token, input_ids, self.end_tokens], dim=1)
input_ids = modified_input_ids.to(self.device)
attention_mask = torch.ones_like(input_ids)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"stream": stream,
"health_check": False
}
def inference(self, inputs):
"""Run model inference (non-streaming)."""
if inputs.get("health_check", False):
return {"status": "ok"}
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
logger.info(f"Running non-streaming inference with max_new_tokens={inputs['max_new_tokens']}")
with torch.no_grad():
generated_ids = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=inputs['max_new_tokens'],
do_sample=True,
temperature=inputs['temperature'],
top_p=inputs['top_p'],
repetition_penalty=inputs['repetition_penalty'],
num_return_sequences=1,
eos_token_id=self.end_audio_token,
)
logger.info(f"Generation complete, output shape: {generated_ids.shape}")
return generated_ids
def postprocess(self, generated_ids):
"""Process generated tokens into a single audio file (non-streaming)."""
if isinstance(generated_ids, dict) and "status" in generated_ids:
return generated_ids
logger.info("Postprocessing generated tokens for non-streaming output")
# Isolate audio tokens after the start_audio_token
token_indices = (generated_ids == self.start_audio_token).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
else:
cropped_tensor = generated_ids
logger.warning("No start audio token found in non-streaming output")
# Get list of token integers, removing the end token
code_list = [t.item() for t in cropped_tensor.squeeze() if t.item() != self.end_audio_token]
# Decode and encode the full audio
audio_b64 = self._decode_audio_chunk(code_list)
if not audio_b64:
return {"error": "No audio samples generated"}
logger.info(f"Audio encoded as base64, length: {len(audio_b64)}")
return {
"audio_b64": audio_b64,
"sample_rate": 24000
}
def _decode_audio_chunk(self, code_list):
"""Decodes a list of token codes into a base64 WAV string."""
if not code_list:
return None
# Ensure length is a multiple of 7 for SNAC
new_length = (len(code_list) // 7) * 7
if new_length == 0:
return None
trimmed_list = code_list[:new_length]
# Adjust token values for SNAC
adjusted_codes = [t - 128266 for t in trimmed_list]
# Redistribute codes into layers for SNAC model
audio = self.redistribute_codes(adjusted_codes)
audio_sample = audio.detach().squeeze().cpu().numpy()
# Convert float32 array to int16 for WAV format
audio_int16 = (audio_sample * 32767).astype(np.int16)
# Create WAV in memory and encode as base64
with io.BytesIO() as wav_io:
with wave.open(wav_io, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(24000)
wav_file.writeframes(audio_int16.tobytes())
wav_data = wav_io.getvalue()
return base64.b64encode(wav_data).decode('utf-8')
def _stream_inference(self, inputs):
"""Generator function for streaming inference."""
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
streamer=streamer,
max_new_tokens=inputs['max_new_tokens'],
do_sample=True,
temperature=inputs['temperature'],
top_p=inputs['top_p'],
repetition_penalty=inputs['repetition_penalty'],
eos_token_id=self.end_audio_token,
)
# Run generation in a separate thread
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
thread.start()
logger.info("Starting streaming inference...")
token_buffer = []
found_start_audio = False
for new_text in streamer:
# The streamer decodes tokens to text, so we must re-encode to get token IDs.
# This is a workaround for HF streamer design.
new_tokens = self.tokenizer.encode(new_text, add_special_tokens=False)
for token in new_tokens:
if not found_start_audio:
if token == self.start_audio_token:
found_start_audio = True
continue # Skip until start_audio_token is found
if token == self.end_audio_token:
# Process any remaining tokens in buffer and stop
if len(token_buffer) >= 7:
audio_b64 = self._decode_audio_chunk(token_buffer)
if audio_b64:
yield f"data: {json.dumps({'audio_b64': audio_b64})}\n\n"
logger.info("End of audio token found. Stopping stream.")
return
token_buffer.append(token)
# If buffer has enough tokens for a multiple of 7, process and yield
if len(token_buffer) >= 7:
process_len = (len(token_buffer) // 7) * 7
codes_to_process = token_buffer[:process_len]
token_buffer = token_buffer[process_len:] # Keep the remainder
audio_b64 = self._decode_audio_chunk(codes_to_process)
if audio_b64:
logger.info(f"Yielding audio chunk of {len(codes_to_process)} tokens")
yield f"data: {json.dumps({'audio_b64': audio_b64})}\n\n"
# Process any final tokens left in the buffer after the loop finishes
if token_buffer:
audio_b64 = self._decode_audio_chunk(token_buffer)
if audio_b64:
yield f"data: {json.dumps({'audio_b64': audio_b64})}\n\n"
logger.info("Streaming complete.")
def redistribute_codes(self, code_list):
"""Reorganize tokens for SNAC decoding."""
layer_1, layer_2, layer_3 = [], [], []
num_groups = len(code_list) // 7
for i in range(num_groups):
idx = 7 * i
layer_1.append(code_list[idx])
layer_2.append(code_list[idx + 1] - 4096)
layer_3.append(code_list[idx + 2] - (2 * 4096))
layer_3.append(code_list[idx + 3] - (3 * 4096))
layer_2.append(code_list[idx + 4] - (4 * 4096))
layer_3.append(code_list[idx + 5] - (5 * 4096))
layer_3.append(code_list[idx + 6] - (6 * 4096))
codes = [
torch.tensor(layer_1).unsqueeze(0).to(self.device),
torch.tensor(layer_2).unsqueeze(0).to(self.device),
torch.tensor(layer_3).unsqueeze(0).to(self.device)
]
return self.snac_model.decode(codes)
def __call__(self, data):
"""Main entry point for the handler."""
if not self._warmed_up:
self._warmup()
try:
# Handle health check separately to avoid preprocessing
if data == "ping" or (isinstance(data, dict) and data.get("inputs") == "ping"):
logger.info("Processing health check request")
return {"status": "ok"}
preprocessed_inputs = self.preprocess(data)
# Route to streaming or non-streaming path
if preprocessed_inputs.get("stream"):
return self._stream_inference(preprocessed_inputs)
else:
model_outputs = self.inference(preprocessed_inputs)
return self.postprocess(model_outputs)
except Exception as e:
import traceback
logger.error(f"Error processing request: {str(e)}\n{traceback.format_exc()}")
return {"error": str(e), "traceback": traceback.format_exc()}
def _warmup(self):
try:
logger.info("Warming up model...")
dummy_prompt = "tara: Hello"
input_ids = self.tokenizer(dummy_prompt, return_tensors="pt").input_ids.to(self.device)
_ = self.model.generate(input_ids=input_ids, max_new_tokens=10)
self._warmed_up = True
logger.info("Warmup complete.")
except Exception as e:
logger.error(f"[WARMUP ERROR] {str(e)}") |