Sync with upstream, add tests
Browse files- flake.lock +12 -12
- flake.nix +3 -0
- tests/test_layer_norm.py +373 -0
- torch-ext/triton_layer_norm/__init__.py +3 -0
- torch-ext/triton_layer_norm/layer_norm.py +338 -244
- torch-ext/triton_layer_norm/utils/__init__.py +0 -0
- torch-ext/triton_layer_norm/utils/library.py +66 -0
- torch-ext/triton_layer_norm/utils/torch.py +21 -0
flake.lock
CHANGED
@@ -73,11 +73,11 @@
|
|
73 |
"nixpkgs": "nixpkgs"
|
74 |
},
|
75 |
"locked": {
|
76 |
-
"lastModified":
|
77 |
-
"narHash": "sha256-
|
78 |
"owner": "huggingface",
|
79 |
"repo": "hf-nix",
|
80 |
-
"rev": "
|
81 |
"type": "github"
|
82 |
},
|
83 |
"original": {
|
@@ -98,11 +98,11 @@
|
|
98 |
]
|
99 |
},
|
100 |
"locked": {
|
101 |
-
"lastModified":
|
102 |
-
"narHash": "sha256-
|
103 |
"owner": "huggingface",
|
104 |
"repo": "kernel-builder",
|
105 |
-
"rev": "
|
106 |
"type": "github"
|
107 |
},
|
108 |
"original": {
|
@@ -113,17 +113,17 @@
|
|
113 |
},
|
114 |
"nixpkgs": {
|
115 |
"locked": {
|
116 |
-
"lastModified":
|
117 |
-
"narHash": "sha256-
|
118 |
-
"owner": "
|
119 |
"repo": "nixpkgs",
|
120 |
-
"rev": "
|
121 |
"type": "github"
|
122 |
},
|
123 |
"original": {
|
124 |
-
"owner": "
|
125 |
-
"ref": "cudatoolkit-12.9-kernel-builder",
|
126 |
"repo": "nixpkgs",
|
|
|
127 |
"type": "github"
|
128 |
}
|
129 |
},
|
|
|
73 |
"nixpkgs": "nixpkgs"
|
74 |
},
|
75 |
"locked": {
|
76 |
+
"lastModified": 1754038838,
|
77 |
+
"narHash": "sha256-oHigCT4z0ayyLyEuxdZooSXRAZP8lfOkZHzY1lx1U50=",
|
78 |
"owner": "huggingface",
|
79 |
"repo": "hf-nix",
|
80 |
+
"rev": "336f781fa284e193baa3d4c3ce3f95fb34e9ffad",
|
81 |
"type": "github"
|
82 |
},
|
83 |
"original": {
|
|
|
98 |
]
|
99 |
},
|
100 |
"locked": {
|
101 |
+
"lastModified": 1756320464,
|
102 |
+
"narHash": "sha256-x9LI4h87/Z9UgTQjgeG0fRcdeXl91xIqBlTauGKZM70=",
|
103 |
"owner": "huggingface",
|
104 |
"repo": "kernel-builder",
|
105 |
+
"rev": "b4accba4496b28faef19a0487fbcf9686b14e2ef",
|
106 |
"type": "github"
|
107 |
},
|
108 |
"original": {
|
|
|
113 |
},
|
114 |
"nixpkgs": {
|
115 |
"locked": {
|
116 |
+
"lastModified": 1752785354,
|
117 |
+
"narHash": "sha256-Y33ryUz7MPqKrZwlbQcsYCUz2jAJCacRf8jbs0tYUlA=",
|
118 |
+
"owner": "nixos",
|
119 |
"repo": "nixpkgs",
|
120 |
+
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
121 |
"type": "github"
|
122 |
},
|
123 |
"original": {
|
124 |
+
"owner": "nixos",
|
|
|
125 |
"repo": "nixpkgs",
|
126 |
+
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
127 |
"type": "github"
|
128 |
}
|
129 |
},
|
flake.nix
CHANGED
@@ -13,5 +13,8 @@
|
|
13 |
kernel-builder.lib.genFlakeOutputs {
|
14 |
path = ./.;
|
15 |
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
|
|
|
|
|
|
16 |
};
|
17 |
}
|
|
|
13 |
kernel-builder.lib.genFlakeOutputs {
|
14 |
path = ./.;
|
15 |
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
16 |
+
# Import-time autotune.
|
17 |
+
doGetKernelCheck = false;
|
18 |
+
pythonCheckInputs = pkgs: with pkgs; [ einops ];
|
19 |
};
|
20 |
}
|
tests/test_layer_norm.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, Tri Dao.
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
from triton_layer_norm import (
|
9 |
+
layer_norm_fn,
|
10 |
+
layer_norm_linear_fn,
|
11 |
+
)
|
12 |
+
from triton_layer_norm.layer_norm import layer_norm_ref, rms_norm_ref
|
13 |
+
|
14 |
+
|
15 |
+
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
|
16 |
+
|
17 |
+
|
18 |
+
# @pytest.mark.parametrize("zero_centered_weight", [False, True])
|
19 |
+
@pytest.mark.parametrize("zero_centered_weight", [False])
|
20 |
+
@pytest.mark.parametrize("has_weight1", [False, True])
|
21 |
+
# @pytest.mark.parametrize("has_weight1", [False])
|
22 |
+
@pytest.mark.parametrize("has_x1", [False, True])
|
23 |
+
# @pytest.mark.parametrize("has_x1", [False])
|
24 |
+
@pytest.mark.parametrize("has_rowscale", [False, True])
|
25 |
+
# @pytest.mark.parametrize("has_rowscale", [False])
|
26 |
+
@pytest.mark.parametrize("dropout_p", [0.0, 0.27])
|
27 |
+
# @pytest.mark.parametrize("dropout_p", [0.0])
|
28 |
+
@pytest.mark.parametrize("prenorm", [True, False])
|
29 |
+
# @pytest.mark.parametrize("prenorm", [True])
|
30 |
+
@pytest.mark.parametrize("is_rms_norm", [False, True])
|
31 |
+
# @pytest.mark.parametrize("is_rms_norm", [True])
|
32 |
+
@pytest.mark.parametrize("has_residual", [True, False])
|
33 |
+
# @pytest.mark.parametrize("has_residual", [True])
|
34 |
+
@pytest.mark.parametrize(
|
35 |
+
"weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else [])
|
36 |
+
)
|
37 |
+
# @pytest.mark.parametrize("weight_dtype", [torch.float32])
|
38 |
+
@pytest.mark.parametrize(
|
39 |
+
"input_dtype,residual_dtype",
|
40 |
+
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
|
41 |
+
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
|
42 |
+
)
|
43 |
+
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.float16, torch.float16)])
|
44 |
+
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 4096])
|
45 |
+
# @pytest.mark.parametrize("hidden_size", [1024])
|
46 |
+
def test_layer_norm(
|
47 |
+
hidden_size,
|
48 |
+
input_dtype,
|
49 |
+
residual_dtype,
|
50 |
+
weight_dtype,
|
51 |
+
has_residual,
|
52 |
+
is_rms_norm,
|
53 |
+
prenorm,
|
54 |
+
dropout_p,
|
55 |
+
has_rowscale,
|
56 |
+
has_x1,
|
57 |
+
has_weight1,
|
58 |
+
zero_centered_weight,
|
59 |
+
):
|
60 |
+
if has_rowscale and has_x1:
|
61 |
+
pytest.skip("Not supported")
|
62 |
+
device = "cuda"
|
63 |
+
if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
|
64 |
+
atol = 5e-2
|
65 |
+
elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
|
66 |
+
atol = 1e-2
|
67 |
+
else:
|
68 |
+
atol = 1e-4
|
69 |
+
# set seed
|
70 |
+
torch.random.manual_seed(0)
|
71 |
+
batch_size = 8
|
72 |
+
seqlen = 512
|
73 |
+
layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref
|
74 |
+
allclose = (
|
75 |
+
# Sometimes x0_pt.grad is NaN
|
76 |
+
lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max()
|
77 |
+
<= 2 * (x_pt[~x_pt.isnan()] - x_ref[~x_pt.isnan()]).abs().max() + atol
|
78 |
+
or (
|
79 |
+
# Sometimes x_pt and x_ref are the same (e.g. bfloat16) so we want to perturb is a bit
|
80 |
+
# by multiply and divide by 0.3
|
81 |
+
(x_pt[~x_pt.isnan()] - x_ref[~x_pt.isnan()]).abs().max() == 0.0
|
82 |
+
and (x - x_ref).abs().max()
|
83 |
+
<= 2 * (x_pt[~x_pt.isnan()] * 0.3 / 0.3 - x_ref[~x_pt.isnan()]).abs().max() + atol
|
84 |
+
)
|
85 |
+
)
|
86 |
+
x0 = torch.randn(
|
87 |
+
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
|
88 |
+
)
|
89 |
+
x0_pt = x0.detach().clone().requires_grad_()
|
90 |
+
x0_ref = x0.detach().clone().requires_grad_()
|
91 |
+
if has_residual:
|
92 |
+
res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
|
93 |
+
res_pt = res.detach().clone().requires_grad_()
|
94 |
+
res_ref = res.detach().clone().requires_grad_()
|
95 |
+
else:
|
96 |
+
res, res_pt, res_ref = None, None, None
|
97 |
+
weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
|
98 |
+
if not is_rms_norm:
|
99 |
+
bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
|
100 |
+
else:
|
101 |
+
bias = None
|
102 |
+
weight_pt = weight.detach().clone().requires_grad_()
|
103 |
+
weight_ref = weight.detach().clone().requires_grad_()
|
104 |
+
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None
|
105 |
+
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
|
106 |
+
if has_x1:
|
107 |
+
x1 = torch.randn_like(x0, dtype=input_dtype, requires_grad=True)
|
108 |
+
x1_pt = x1.detach().clone().requires_grad_()
|
109 |
+
x1_ref = x1.detach().clone().requires_grad_()
|
110 |
+
else:
|
111 |
+
x1, x1_pt, x1_ref = None, None, None
|
112 |
+
if has_weight1:
|
113 |
+
weight1 = torch.randn(
|
114 |
+
hidden_size, device=device, dtype=weight_dtype, requires_grad=True
|
115 |
+
)
|
116 |
+
weight1_pt = weight1.detach().clone().requires_grad_()
|
117 |
+
weight1_ref = weight1.detach().clone().requires_grad_()
|
118 |
+
if not is_rms_norm:
|
119 |
+
bias1 = torch.randn(
|
120 |
+
hidden_size, device=device, dtype=weight_dtype, requires_grad=True
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
bias1 = None
|
124 |
+
bias1_pt = bias1.detach().clone().requires_grad_() if bias1 is not None else None
|
125 |
+
bias1_ref = bias1.detach().clone().requires_grad_() if bias1 is not None else None
|
126 |
+
else:
|
127 |
+
weight1, weight1_pt, weight1_ref = None, None, None
|
128 |
+
bias1, bias1_pt, bias1_ref = None, None, None
|
129 |
+
|
130 |
+
rowscale = (
|
131 |
+
torch.randn(batch_size, seqlen, dtype=input_dtype, device=device)
|
132 |
+
if has_rowscale
|
133 |
+
else None
|
134 |
+
)
|
135 |
+
|
136 |
+
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
|
137 |
+
out, *rest = layer_norm_fn(
|
138 |
+
x0,
|
139 |
+
weight,
|
140 |
+
bias,
|
141 |
+
residual=res,
|
142 |
+
x1=x1,
|
143 |
+
weight1=weight1,
|
144 |
+
bias1=bias1,
|
145 |
+
eps=1e-6,
|
146 |
+
dropout_p=dropout_p,
|
147 |
+
rowscale=rowscale,
|
148 |
+
prenorm=prenorm,
|
149 |
+
residual_in_fp32=residual_in_fp32,
|
150 |
+
zero_centered_weight=zero_centered_weight,
|
151 |
+
is_rms_norm=is_rms_norm,
|
152 |
+
return_dropout_mask=True,
|
153 |
+
)
|
154 |
+
dropout_mask = rest[-2] if dropout_p > 0.0 else None
|
155 |
+
dropout_mask1 = rest[-1] if dropout_p > 0.0 and x1 is not None else None
|
156 |
+
out_pt = layer_norm_ref_fn(
|
157 |
+
x0_pt,
|
158 |
+
weight_pt,
|
159 |
+
bias_pt,
|
160 |
+
residual=res_pt,
|
161 |
+
x1=x1_pt,
|
162 |
+
weight1=weight1_pt,
|
163 |
+
bias1=bias1_pt,
|
164 |
+
eps=1e-6,
|
165 |
+
dropout_p=dropout_p,
|
166 |
+
rowscale=rowscale,
|
167 |
+
prenorm=prenorm,
|
168 |
+
zero_centered_weight=zero_centered_weight,
|
169 |
+
dropout_mask=dropout_mask,
|
170 |
+
dropout_mask1=dropout_mask1,
|
171 |
+
)
|
172 |
+
out_ref = layer_norm_ref_fn(
|
173 |
+
x0_ref,
|
174 |
+
weight_ref,
|
175 |
+
bias_ref,
|
176 |
+
residual=res_ref,
|
177 |
+
x1=x1_ref,
|
178 |
+
weight1=weight1_ref,
|
179 |
+
bias1=bias1_ref,
|
180 |
+
eps=1e-6,
|
181 |
+
dropout_p=dropout_p,
|
182 |
+
rowscale=rowscale,
|
183 |
+
prenorm=prenorm,
|
184 |
+
zero_centered_weight=zero_centered_weight,
|
185 |
+
dropout_mask=dropout_mask,
|
186 |
+
dropout_mask1=dropout_mask1,
|
187 |
+
upcast=True,
|
188 |
+
)
|
189 |
+
if not has_weight1:
|
190 |
+
if prenorm:
|
191 |
+
residual = rest[0]
|
192 |
+
out_pt, residual_pt = out_pt
|
193 |
+
out_ref, residual_ref = out_ref
|
194 |
+
out1, out1_pt, out1_ref = None, None, None
|
195 |
+
else:
|
196 |
+
out1 = rest.pop(0)
|
197 |
+
if prenorm:
|
198 |
+
residual = rest[0]
|
199 |
+
out_pt, out1_pt, residual_pt = out_pt
|
200 |
+
out_ref, out1_ref, residual_ref = out_ref
|
201 |
+
else:
|
202 |
+
out_pt, out1_pt = out_pt
|
203 |
+
out_ref, out1_ref = out_ref
|
204 |
+
assert out.dtype == input_dtype
|
205 |
+
if prenorm:
|
206 |
+
assert residual.dtype == residual_dtype
|
207 |
+
assert allclose(residual, residual_pt, residual_ref)
|
208 |
+
assert allclose(out, out_pt, out_ref)
|
209 |
+
if out1 is not None:
|
210 |
+
assert out1.dtype == input_dtype
|
211 |
+
assert allclose(out1, out1_pt, out1_ref)
|
212 |
+
if dropout_mask is not None:
|
213 |
+
dropout_fraction = 1.0 - dropout_mask.float().mean()
|
214 |
+
assert abs(dropout_fraction - dropout_p) < 0.01
|
215 |
+
if dropout_mask1 is not None:
|
216 |
+
dropout_fraction = 1.0 - dropout_mask1.float().mean()
|
217 |
+
assert abs(dropout_fraction - dropout_p) < 0.01
|
218 |
+
assert not torch.equal(dropout_mask, dropout_mask1)
|
219 |
+
|
220 |
+
g = torch.randn_like(out) / batch_size
|
221 |
+
if has_weight1:
|
222 |
+
out = out * F.gelu(out1)
|
223 |
+
out_pt = out_pt * F.gelu(out1_pt)
|
224 |
+
out_ref = out_ref * F.gelu(out1_ref)
|
225 |
+
if not prenorm:
|
226 |
+
out.backward(g)
|
227 |
+
out_pt.backward(g)
|
228 |
+
out_ref.backward(g)
|
229 |
+
else:
|
230 |
+
(out * F.sigmoid(residual)).backward(g)
|
231 |
+
(out_pt * F.sigmoid(residual_pt)).backward(g)
|
232 |
+
(out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
|
233 |
+
assert allclose(x0.grad, x0_pt.grad, x0_ref.grad)
|
234 |
+
if has_residual:
|
235 |
+
assert allclose(res.grad, res_pt.grad, res_ref.grad)
|
236 |
+
if has_x1:
|
237 |
+
assert allclose(x1.grad, x1_pt.grad, x1_ref.grad)
|
238 |
+
assert allclose(weight.grad, weight_pt.grad, weight_ref.grad)
|
239 |
+
if bias is not None:
|
240 |
+
assert allclose(bias.grad, bias_pt.grad, bias_ref.grad)
|
241 |
+
if has_weight1:
|
242 |
+
assert allclose(weight1.grad, weight1_pt.grad, weight1_ref.grad)
|
243 |
+
if bias1 is not None:
|
244 |
+
assert allclose(bias1.grad, bias1_pt.grad, bias1_ref.grad)
|
245 |
+
|
246 |
+
|
247 |
+
@pytest.mark.parametrize("prenorm", [True, False])
|
248 |
+
# @pytest.mark.parametrize("prenorm", [True])
|
249 |
+
@pytest.mark.parametrize("is_rms_norm", [False, True])
|
250 |
+
# @pytest.mark.parametrize("is_rms_norm", [True])
|
251 |
+
@pytest.mark.parametrize("has_residual", [True, False])
|
252 |
+
# @pytest.mark.parametrize("has_residual", [False])
|
253 |
+
@pytest.mark.parametrize("weight_dtype", [torch.float32])
|
254 |
+
@pytest.mark.parametrize(
|
255 |
+
"input_dtype,residual_dtype",
|
256 |
+
[(torch.float16, torch.float16), (torch.float16, torch.float32)]
|
257 |
+
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
|
258 |
+
)
|
259 |
+
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)])
|
260 |
+
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000])
|
261 |
+
# @pytest.mark.parametrize("hidden_size", [256])
|
262 |
+
def test_layer_norm_linear(
|
263 |
+
hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm, prenorm
|
264 |
+
):
|
265 |
+
device = "cuda"
|
266 |
+
if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
|
267 |
+
atol = 5e-2
|
268 |
+
elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
|
269 |
+
atol = 1e-2
|
270 |
+
else:
|
271 |
+
atol = 1e-4
|
272 |
+
# set seed
|
273 |
+
torch.random.manual_seed(0)
|
274 |
+
batch_size = 4
|
275 |
+
seqlen = 512
|
276 |
+
# batch_size = 1
|
277 |
+
# seqlen = 1
|
278 |
+
layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref
|
279 |
+
allclose = (
|
280 |
+
lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max()
|
281 |
+
<= 2 * (x_pt - x_ref).abs().max() + atol
|
282 |
+
)
|
283 |
+
x0 = torch.randn(
|
284 |
+
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
|
285 |
+
)
|
286 |
+
x0_pt = x0.detach().clone().requires_grad_()
|
287 |
+
x0_ref = x0.detach().clone().requires_grad_()
|
288 |
+
if has_residual:
|
289 |
+
res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
|
290 |
+
res_pt = res.detach().clone().requires_grad_()
|
291 |
+
res_ref = res.detach().clone().requires_grad_()
|
292 |
+
else:
|
293 |
+
res, res_pt, res_ref = None, None, None
|
294 |
+
norm_weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
|
295 |
+
if not is_rms_norm:
|
296 |
+
norm_bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
|
297 |
+
else:
|
298 |
+
norm_bias = None
|
299 |
+
norm_weight_pt = norm_weight.detach().clone().requires_grad_()
|
300 |
+
norm_weight_ref = norm_weight.detach().clone().requires_grad_()
|
301 |
+
norm_bias_pt = norm_bias.detach().clone().requires_grad_() if norm_bias is not None else None
|
302 |
+
norm_bias_ref = norm_bias.detach().clone().requires_grad_() if norm_bias is not None else None
|
303 |
+
linear_weight = torch.empty(
|
304 |
+
2 * hidden_size, hidden_size, device=device, dtype=weight_dtype, requires_grad=True
|
305 |
+
)
|
306 |
+
torch.nn.init.xavier_uniform_(linear_weight)
|
307 |
+
if not is_rms_norm:
|
308 |
+
linear_bias = torch.randn(
|
309 |
+
2 * hidden_size, device=device, dtype=weight_dtype, requires_grad=True
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
linear_bias = None
|
313 |
+
linear_weight_pt = linear_weight.detach().clone().requires_grad_()
|
314 |
+
linear_weight_ref = linear_weight.detach().clone().requires_grad_()
|
315 |
+
linear_bias_pt = (
|
316 |
+
linear_bias.detach().clone().requires_grad_() if linear_bias is not None else None
|
317 |
+
)
|
318 |
+
linear_bias_ref = (
|
319 |
+
linear_bias.detach().clone().requires_grad_() if linear_bias is not None else None
|
320 |
+
)
|
321 |
+
|
322 |
+
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
|
323 |
+
with torch.autocast(device_type="cuda", dtype=input_dtype):
|
324 |
+
out, *rest = layer_norm_linear_fn(
|
325 |
+
x0,
|
326 |
+
norm_weight,
|
327 |
+
norm_bias,
|
328 |
+
linear_weight,
|
329 |
+
linear_bias,
|
330 |
+
residual=res,
|
331 |
+
eps=1e-6,
|
332 |
+
prenorm=prenorm,
|
333 |
+
residual_in_fp32=residual_in_fp32,
|
334 |
+
is_rms_norm=is_rms_norm,
|
335 |
+
)
|
336 |
+
out_pt, *rest_pt = layer_norm_ref_fn(
|
337 |
+
x0_pt, norm_weight_pt, norm_bias_pt, residual=res_pt, eps=1e-6, prenorm=prenorm
|
338 |
+
)
|
339 |
+
with torch.autocast(device_type="cuda", dtype=input_dtype):
|
340 |
+
out_pt = F.linear(out_pt, linear_weight_pt, linear_bias_pt)
|
341 |
+
out_ref, *rest_ref = layer_norm_ref_fn(
|
342 |
+
x0_ref,
|
343 |
+
norm_weight_ref,
|
344 |
+
norm_bias_ref,
|
345 |
+
residual=res_ref,
|
346 |
+
eps=1e-6,
|
347 |
+
prenorm=prenorm,
|
348 |
+
upcast=True,
|
349 |
+
)
|
350 |
+
out_ref = F.linear(out_ref.to(linear_weight_ref.dtype), linear_weight_ref, linear_bias_ref)
|
351 |
+
if prenorm:
|
352 |
+
residual = rest[0]
|
353 |
+
residual_pt = rest_pt[0]
|
354 |
+
residual_ref = rest_ref[0]
|
355 |
+
assert out.dtype == input_dtype
|
356 |
+
if prenorm:
|
357 |
+
assert residual.dtype == residual_dtype
|
358 |
+
assert allclose(residual, residual_pt, residual_ref)
|
359 |
+
assert allclose(out, out_pt, out_ref)
|
360 |
+
|
361 |
+
g = torch.randn_like(out) / batch_size
|
362 |
+
out.backward(g)
|
363 |
+
out_pt.backward(g)
|
364 |
+
out_ref.backward(g)
|
365 |
+
assert allclose(x0.grad, x0_pt.grad, x0_ref.grad)
|
366 |
+
if has_residual:
|
367 |
+
assert allclose(res.grad, res_pt.grad, res_ref.grad)
|
368 |
+
assert allclose(norm_weight.grad, norm_weight_pt.grad, norm_weight_ref.grad)
|
369 |
+
if norm_bias is not None:
|
370 |
+
assert allclose(norm_bias.grad, norm_bias_pt.grad, norm_bias_ref.grad)
|
371 |
+
assert allclose(linear_weight.grad, linear_weight_pt.grad, linear_weight_ref.grad)
|
372 |
+
if linear_bias is not None:
|
373 |
+
assert allclose(linear_bias.grad, linear_bias_pt.grad, linear_bias_ref.grad)
|
torch-ext/triton_layer_norm/__init__.py
CHANGED
@@ -25,6 +25,7 @@ def layer_norm(
|
|
25 |
rowscale=None,
|
26 |
prenorm: bool = False,
|
27 |
residual_in_fp32: bool = False,
|
|
|
28 |
is_rms_norm: bool = False,
|
29 |
return_dropout_mask: bool = False,
|
30 |
out: Optional[torch.Tensor] = None,
|
@@ -61,6 +62,8 @@ def layer_norm(
|
|
61 |
If True, returns both the normalized output and the unnormalized input+residual.
|
62 |
residual_in_fp32 (`bool`, *optional*, defaults to False):
|
63 |
If True, performs the residual connection in FP32 precision.
|
|
|
|
|
64 |
is_rms_norm (`bool`, *optional*, defaults to False):
|
65 |
If True, uses RMS normalization instead of layer normalization.
|
66 |
return_dropout_mask (`bool`, *optional*, defaults to False):
|
|
|
25 |
rowscale=None,
|
26 |
prenorm: bool = False,
|
27 |
residual_in_fp32: bool = False,
|
28 |
+
zero_centered_weight: bool = False,
|
29 |
is_rms_norm: bool = False,
|
30 |
return_dropout_mask: bool = False,
|
31 |
out: Optional[torch.Tensor] = None,
|
|
|
62 |
If True, returns both the normalized output and the unnormalized input+residual.
|
63 |
residual_in_fp32 (`bool`, *optional*, defaults to False):
|
64 |
If True, performs the residual connection in FP32 precision.
|
65 |
+
zero_centered_weight (`bool`, *optional*, defaults to False):
|
66 |
+
When set to true, 1.0 is added to the weight before applying it.
|
67 |
is_rms_norm (`bool`, *optional*, defaults to False):
|
68 |
If True, uses RMS normalization instead of layer normalization.
|
69 |
return_dropout_mask (`bool`, *optional*, defaults to False):
|
torch-ext/triton_layer_norm/layer_norm.py
CHANGED
@@ -7,14 +7,40 @@
|
|
7 |
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
8 |
|
9 |
import math
|
|
|
10 |
|
11 |
import torch
|
12 |
import torch.nn.functional as F
|
13 |
-
from torch
|
14 |
|
15 |
import triton
|
16 |
import triton.language as tl
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def layer_norm_ref(
|
20 |
x,
|
@@ -28,6 +54,7 @@ def layer_norm_ref(
|
|
28 |
dropout_p=0.0,
|
29 |
rowscale=None,
|
30 |
prenorm=False,
|
|
|
31 |
dropout_mask=None,
|
32 |
dropout_mask1=None,
|
33 |
upcast=False,
|
@@ -41,6 +68,10 @@ def layer_norm_ref(
|
|
41 |
x1 = x1.float() if x1 is not None else None
|
42 |
weight1 = weight1.float() if weight1 is not None else None
|
43 |
bias1 = bias1.float() if bias1 is not None else None
|
|
|
|
|
|
|
|
|
44 |
if x1 is not None:
|
45 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
46 |
if rowscale is not None:
|
@@ -59,9 +90,9 @@ def layer_norm_ref(
|
|
59 |
x = x + x1
|
60 |
if residual is not None:
|
61 |
x = (x + residual).to(x.dtype)
|
62 |
-
out = F.layer_norm(
|
63 |
-
|
64 |
-
)
|
65 |
if weight1 is None:
|
66 |
return out if not prenorm else (out, x)
|
67 |
else:
|
@@ -83,6 +114,7 @@ def rms_norm_ref(
|
|
83 |
dropout_p=0.0,
|
84 |
rowscale=None,
|
85 |
prenorm=False,
|
|
|
86 |
dropout_mask=None,
|
87 |
dropout_mask1=None,
|
88 |
upcast=False,
|
@@ -96,6 +128,10 @@ def rms_norm_ref(
|
|
96 |
x1 = x1.float() if x1 is not None else None
|
97 |
weight1 = weight1.float() if weight1 is not None else None
|
98 |
bias1 = bias1.float() if bias1 is not None else None
|
|
|
|
|
|
|
|
|
99 |
if x1 is not None:
|
100 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
101 |
if rowscale is not None:
|
@@ -115,34 +151,26 @@ def rms_norm_ref(
|
|
115 |
if residual is not None:
|
116 |
x = (x + residual).to(x.dtype)
|
117 |
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
118 |
-
out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(
|
119 |
-
dtype
|
120 |
-
)
|
121 |
if weight1 is None:
|
122 |
return out if not prenorm else (out, x)
|
123 |
else:
|
124 |
-
out1 = (
|
125 |
-
|
126 |
-
)
|
127 |
return (out, out1) if not prenorm else (out, out1, x)
|
128 |
|
129 |
|
130 |
@triton.autotune(
|
131 |
-
configs=
|
132 |
-
|
133 |
-
triton.Config({}, num_warps=2),
|
134 |
-
triton.Config({}, num_warps=4),
|
135 |
-
triton.Config({}, num_warps=8),
|
136 |
-
triton.Config({}, num_warps=16),
|
137 |
-
triton.Config({}, num_warps=32),
|
138 |
-
],
|
139 |
-
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
|
140 |
)
|
|
|
141 |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
142 |
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
143 |
-
@triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
|
144 |
-
@triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
|
145 |
-
@triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
|
146 |
@triton.jit
|
147 |
def _layer_norm_fwd_1pass_kernel(
|
148 |
X, # pointer to the input
|
@@ -158,6 +186,7 @@ def _layer_norm_fwd_1pass_kernel(
|
|
158 |
ROWSCALE,
|
159 |
SEEDS, # Dropout seeds for each row
|
160 |
DROPOUT_MASK,
|
|
|
161 |
Mean, # pointer to the mean
|
162 |
Rstd, # pointer to the 1/std
|
163 |
stride_x_row, # how much to increase the pointer when moving by 1 row
|
@@ -170,6 +199,7 @@ def _layer_norm_fwd_1pass_kernel(
|
|
170 |
N, # number of columns in X
|
171 |
eps, # epsilon to avoid division by zero
|
172 |
dropout_p, # Dropout probability
|
|
|
173 |
IS_RMS_NORM: tl.constexpr,
|
174 |
BLOCK_N: tl.constexpr,
|
175 |
HAS_RESIDUAL: tl.constexpr,
|
@@ -203,9 +233,7 @@ def _layer_norm_fwd_1pass_kernel(
|
|
203 |
if HAS_DROPOUT:
|
204 |
# Compute dropout mask
|
205 |
# 7 rounds is good enough, and reduces register pressure
|
206 |
-
keep_mask = (
|
207 |
-
tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
208 |
-
)
|
209 |
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
|
210 |
if STORE_DROPOUT_MASK:
|
211 |
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
|
@@ -218,12 +246,11 @@ def _layer_norm_fwd_1pass_kernel(
|
|
218 |
# Compute dropout mask
|
219 |
# 7 rounds is good enough, and reduces register pressure
|
220 |
keep_mask = (
|
221 |
-
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7)
|
222 |
-
> dropout_p
|
223 |
)
|
224 |
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
|
225 |
if STORE_DROPOUT_MASK:
|
226 |
-
tl.store(
|
227 |
x += x1
|
228 |
if HAS_RESIDUAL:
|
229 |
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
@@ -243,6 +270,8 @@ def _layer_norm_fwd_1pass_kernel(
|
|
243 |
# Normalize and apply linear transformation
|
244 |
mask = cols < N
|
245 |
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
|
|
|
|
246 |
if HAS_BIAS:
|
247 |
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
248 |
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
@@ -251,6 +280,8 @@ def _layer_norm_fwd_1pass_kernel(
|
|
251 |
tl.store(Y + cols, y, mask=mask)
|
252 |
if HAS_W1:
|
253 |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
|
|
|
|
254 |
if HAS_B1:
|
255 |
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
|
256 |
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
|
@@ -258,25 +289,87 @@ def _layer_norm_fwd_1pass_kernel(
|
|
258 |
|
259 |
|
260 |
def _layer_norm_fwd(
|
261 |
-
x,
|
262 |
-
weight,
|
263 |
-
bias,
|
264 |
-
eps,
|
265 |
-
residual=None,
|
266 |
-
x1=None,
|
267 |
-
weight1=None,
|
268 |
-
bias1=None,
|
269 |
-
dropout_p=0.0,
|
270 |
-
rowscale=None,
|
271 |
-
out_dtype=None,
|
272 |
-
residual_dtype=None,
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
if residual is not None:
|
279 |
residual_dtype = residual.dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
M, N = x.shape
|
281 |
assert x.stride(-1) == 1
|
282 |
if residual is not None:
|
@@ -300,41 +393,17 @@ def _layer_norm_fwd(
|
|
300 |
if rowscale is not None:
|
301 |
assert rowscale.is_contiguous()
|
302 |
assert rowscale.shape == (M,)
|
303 |
-
|
304 |
-
if out is None:
|
305 |
-
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
306 |
-
else:
|
307 |
-
assert out.shape == x.shape
|
308 |
assert out.stride(-1) == 1
|
|
|
|
|
|
|
309 |
if weight1 is not None:
|
310 |
y1 = torch.empty_like(out)
|
311 |
assert y1.stride(-1) == 1
|
312 |
else:
|
313 |
y1 = None
|
314 |
-
if
|
315 |
-
residual is not None
|
316 |
-
or (residual_dtype is not None and residual_dtype != x.dtype)
|
317 |
-
or dropout_p > 0.0
|
318 |
-
or rowscale is not None
|
319 |
-
or x1 is not None
|
320 |
-
):
|
321 |
-
if residual_out is None:
|
322 |
-
residual_out = torch.empty(
|
323 |
-
M,
|
324 |
-
N,
|
325 |
-
device=x.device,
|
326 |
-
dtype=residual_dtype if residual_dtype is not None else x.dtype,
|
327 |
-
)
|
328 |
-
else:
|
329 |
-
assert residual_out.shape == x.shape
|
330 |
-
assert residual_out.stride(-1) == 1
|
331 |
-
else:
|
332 |
-
residual_out = None
|
333 |
-
mean = (
|
334 |
-
torch.empty((M,), dtype=torch.float32, device=x.device)
|
335 |
-
if not is_rms_norm
|
336 |
-
else None
|
337 |
-
)
|
338 |
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
339 |
if dropout_p > 0.0:
|
340 |
seeds = torch.randint(
|
@@ -343,18 +412,20 @@ def _layer_norm_fwd(
|
|
343 |
else:
|
344 |
seeds = None
|
345 |
if return_dropout_mask and dropout_p > 0.0:
|
346 |
-
dropout_mask = torch.empty(
|
347 |
-
|
348 |
-
|
|
|
|
|
349 |
else:
|
350 |
-
dropout_mask = None
|
351 |
# Less than 64KB per feature: enqueue fused kernel
|
352 |
MAX_FUSED_SIZE = 65536 // x.element_size()
|
353 |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
354 |
if N > BLOCK_N:
|
355 |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
356 |
with torch.cuda.device(x.device.index):
|
357 |
-
_layer_norm_fwd_1pass_kernel[(M,)](
|
358 |
x,
|
359 |
out,
|
360 |
weight,
|
@@ -368,6 +439,7 @@ def _layer_norm_fwd(
|
|
368 |
rowscale,
|
369 |
seeds,
|
370 |
dropout_mask,
|
|
|
371 |
mean,
|
372 |
rstd,
|
373 |
x.stride(0),
|
@@ -380,6 +452,8 @@ def _layer_norm_fwd(
|
|
380 |
N,
|
381 |
eps,
|
382 |
dropout_p,
|
|
|
|
|
383 |
is_rms_norm,
|
384 |
BLOCK_N,
|
385 |
residual is not None,
|
@@ -388,50 +462,26 @@ def _layer_norm_fwd(
|
|
388 |
dropout_p > 0.0,
|
389 |
dropout_mask is not None,
|
390 |
rowscale is not None,
|
|
|
|
|
|
|
391 |
)
|
392 |
-
|
393 |
-
if dropout_mask is not None and x1 is not None:
|
394 |
-
dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0)
|
395 |
-
else:
|
396 |
-
dropout_mask1 = None
|
397 |
-
return (
|
398 |
-
out,
|
399 |
-
y1,
|
400 |
-
mean,
|
401 |
-
rstd,
|
402 |
-
residual_out if residual_out is not None else x,
|
403 |
-
seeds,
|
404 |
-
dropout_mask,
|
405 |
-
dropout_mask1,
|
406 |
-
)
|
407 |
|
408 |
|
409 |
@triton.autotune(
|
410 |
-
configs=
|
411 |
-
|
412 |
-
triton.Config({}, num_warps=2),
|
413 |
-
triton.Config({}, num_warps=4),
|
414 |
-
triton.Config({}, num_warps=8),
|
415 |
-
triton.Config({}, num_warps=16),
|
416 |
-
triton.Config({}, num_warps=32),
|
417 |
-
],
|
418 |
-
key=[
|
419 |
-
"N",
|
420 |
-
"HAS_DRESIDUAL",
|
421 |
-
"STORE_DRESIDUAL",
|
422 |
-
"IS_RMS_NORM",
|
423 |
-
"HAS_BIAS",
|
424 |
-
"HAS_DROPOUT",
|
425 |
-
],
|
426 |
)
|
|
|
427 |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
428 |
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
429 |
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
430 |
-
@triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
|
431 |
-
@triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
|
432 |
-
@triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
|
433 |
-
@triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
|
434 |
-
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
435 |
@triton.jit
|
436 |
def _layer_norm_bwd_kernel(
|
437 |
X, # pointer to the input
|
@@ -465,6 +515,7 @@ def _layer_norm_bwd_kernel(
|
|
465 |
N, # number of columns in X
|
466 |
eps, # epsilon to avoid division by zero
|
467 |
dropout_p,
|
|
|
468 |
rows_per_program,
|
469 |
IS_RMS_NORM: tl.constexpr,
|
470 |
BLOCK_N: tl.constexpr,
|
@@ -498,10 +549,14 @@ def _layer_norm_bwd_kernel(
|
|
498 |
if RECOMPUTE_OUTPUT:
|
499 |
Y += row_start * stride_y_row
|
500 |
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
|
|
|
|
501 |
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
502 |
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
503 |
if HAS_DY1:
|
504 |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
|
|
|
|
505 |
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
506 |
if HAS_BIAS:
|
507 |
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
@@ -550,18 +605,14 @@ def _layer_norm_bwd_kernel(
|
|
550 |
if HAS_DX1:
|
551 |
if HAS_DROPOUT:
|
552 |
keep_mask = (
|
553 |
-
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7)
|
554 |
-
> dropout_p
|
555 |
)
|
556 |
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
557 |
else:
|
558 |
dx1 = dx
|
559 |
tl.store(DX1 + cols, dx1, mask=mask)
|
560 |
if HAS_DROPOUT:
|
561 |
-
keep_mask = (
|
562 |
-
tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7)
|
563 |
-
> dropout_p
|
564 |
-
)
|
565 |
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
566 |
if HAS_ROWSCALE:
|
567 |
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
@@ -591,31 +642,93 @@ def _layer_norm_bwd_kernel(
|
|
591 |
|
592 |
|
593 |
def _layer_norm_bwd(
|
594 |
-
dy,
|
595 |
-
x,
|
596 |
-
weight,
|
597 |
-
bias,
|
598 |
-
eps,
|
599 |
-
mean,
|
600 |
-
rstd,
|
601 |
-
dresidual=None,
|
602 |
-
dy1=None,
|
603 |
-
weight1=None,
|
604 |
-
bias1=None,
|
605 |
-
seeds=None,
|
606 |
-
dropout_p=0.0,
|
607 |
-
rowscale=None,
|
608 |
-
has_residual=False,
|
609 |
-
has_x1=False,
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
614 |
M, N = x.shape
|
615 |
assert x.stride(-1) == 1
|
|
|
616 |
assert dy.stride(-1) == 1
|
617 |
assert dy.shape == (M, N)
|
618 |
if dresidual is not None:
|
|
|
619 |
assert dresidual.stride(-1) == 1
|
620 |
assert dresidual.shape == (M, N)
|
621 |
assert weight.shape == (N,)
|
@@ -624,6 +737,7 @@ def _layer_norm_bwd(
|
|
624 |
assert bias.stride(-1) == 1
|
625 |
assert bias.shape == (N,)
|
626 |
if dy1 is not None:
|
|
|
627 |
assert weight1 is not None
|
628 |
assert dy1.shape == dy.shape
|
629 |
assert dy1.stride(-1) == 1
|
@@ -652,22 +766,18 @@ def _layer_norm_bwd(
|
|
652 |
else None
|
653 |
)
|
654 |
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
|
655 |
-
y = (
|
656 |
-
torch.empty(M, N, dtype=dy.dtype, device=dy.device)
|
657 |
-
if recompute_output
|
658 |
-
else None
|
659 |
-
)
|
660 |
if recompute_output:
|
661 |
-
assert
|
662 |
-
weight1 is None
|
663 |
-
), "recompute_output is not supported with parallel LayerNorm"
|
664 |
|
665 |
# Less than 64KB per feature: enqueue fused kernel
|
666 |
MAX_FUSED_SIZE = 65536 // x.element_size()
|
667 |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
668 |
if N > BLOCK_N:
|
669 |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
670 |
-
|
|
|
|
|
671 |
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
672 |
_db = (
|
673 |
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
@@ -679,7 +789,7 @@ def _layer_norm_bwd(
|
|
679 |
rows_per_program = math.ceil(M / sm_count)
|
680 |
grid = (sm_count,)
|
681 |
with torch.cuda.device(x.device.index):
|
682 |
-
_layer_norm_bwd_kernel[grid](
|
683 |
x,
|
684 |
weight,
|
685 |
bias,
|
@@ -711,6 +821,8 @@ def _layer_norm_bwd(
|
|
711 |
N,
|
712 |
eps,
|
713 |
dropout_p,
|
|
|
|
|
714 |
rows_per_program,
|
715 |
is_rms_norm,
|
716 |
BLOCK_N,
|
@@ -718,24 +830,22 @@ def _layer_norm_bwd(
|
|
718 |
dresidual_in is not None,
|
719 |
bias is not None,
|
720 |
dropout_p > 0.0,
|
|
|
|
|
|
|
|
|
|
|
721 |
)
|
722 |
dw = _dw.sum(0).to(weight.dtype)
|
723 |
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
724 |
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
|
725 |
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
|
726 |
-
#
|
727 |
-
|
728 |
-
dresidual_in = dx
|
729 |
-
if has_x1 and dropout_p == 0.0:
|
730 |
-
dx1 = dx
|
731 |
-
return (
|
732 |
-
(dx, dw, db, dresidual_in, dx1, dw1, db1)
|
733 |
-
if not recompute_output
|
734 |
-
else (dx, dw, db, dresidual_in, dx1, dw1, db1, y)
|
735 |
-
)
|
736 |
|
737 |
|
738 |
class LayerNormFn(torch.autograd.Function):
|
|
|
739 |
@staticmethod
|
740 |
def forward(
|
741 |
ctx,
|
@@ -751,34 +861,27 @@ class LayerNormFn(torch.autograd.Function):
|
|
751 |
rowscale=None,
|
752 |
prenorm=False,
|
753 |
residual_in_fp32=False,
|
|
|
754 |
is_rms_norm=False,
|
755 |
return_dropout_mask=False,
|
|
|
756 |
out=None,
|
757 |
-
residual_out=None
|
758 |
):
|
759 |
x_shape_og = x.shape
|
760 |
# reshape input data into 2D tensor
|
761 |
-
x = x.reshape(-1, x.shape[-1])
|
762 |
-
if x.stride(-1) != 1:
|
763 |
-
x = x.contiguous()
|
764 |
if residual is not None:
|
765 |
assert residual.shape == x_shape_og
|
766 |
-
residual = residual.reshape(-1, residual.shape[-1])
|
767 |
-
if residual.stride(-1) != 1:
|
768 |
-
residual = residual.contiguous()
|
769 |
if x1 is not None:
|
770 |
assert x1.shape == x_shape_og
|
771 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
772 |
-
x1 = x1.reshape(-1, x1.shape[-1])
|
773 |
-
if x1.stride(-1) != 1:
|
774 |
-
x1 = x1.contiguous()
|
775 |
weight = weight.contiguous()
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
weight1 = weight1.contiguous()
|
780 |
-
if bias1 is not None:
|
781 |
-
bias1 = bias1.contiguous()
|
782 |
if rowscale is not None:
|
783 |
rowscale = rowscale.reshape(-1).contiguous()
|
784 |
residual_dtype = (
|
@@ -790,24 +893,24 @@ class LayerNormFn(torch.autograd.Function):
|
|
790 |
out = out.reshape(-1, out.shape[-1])
|
791 |
if residual_out is not None:
|
792 |
residual_out = residual_out.reshape(-1, residual_out.shape[-1])
|
793 |
-
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = (
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
)
|
812 |
ctx.save_for_backward(
|
813 |
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
|
@@ -820,17 +923,12 @@ class LayerNormFn(torch.autograd.Function):
|
|
820 |
ctx.has_x1 = x1 is not None
|
821 |
ctx.prenorm = prenorm
|
822 |
ctx.x_dtype = x.dtype
|
|
|
823 |
y = y.reshape(x_shape_og)
|
824 |
y1 = y1.reshape(x_shape_og) if y1 is not None else None
|
825 |
-
residual_out = (
|
826 |
-
|
827 |
-
)
|
828 |
-
dropout_mask = (
|
829 |
-
dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
|
830 |
-
)
|
831 |
-
dropout_mask1 = (
|
832 |
-
dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
|
833 |
-
)
|
834 |
if not return_dropout_mask:
|
835 |
if weight1 is None:
|
836 |
return y if not prenorm else (y, residual_out)
|
@@ -854,26 +952,19 @@ class LayerNormFn(torch.autograd.Function):
|
|
854 |
def backward(ctx, dy, *args):
|
855 |
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
|
856 |
dy = dy.reshape(-1, dy.shape[-1])
|
857 |
-
if dy.stride(-1) != 1:
|
858 |
-
dy = dy.contiguous()
|
859 |
-
assert dy.shape == x.shape
|
860 |
if weight1 is not None:
|
861 |
dy1, args = args[0], args[1:]
|
862 |
dy1 = dy1.reshape(-1, dy1.shape[-1])
|
863 |
-
if dy1.stride(-1) != 1:
|
864 |
-
dy1 = dy1.contiguous()
|
865 |
assert dy1.shape == x.shape
|
866 |
else:
|
867 |
dy1 = None
|
868 |
if ctx.prenorm:
|
869 |
dresidual = args[0]
|
870 |
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
871 |
-
if dresidual.stride(-1) != 1:
|
872 |
-
dresidual = dresidual.contiguous()
|
873 |
assert dresidual.shape == x.shape
|
874 |
else:
|
875 |
dresidual = None
|
876 |
-
dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd(
|
877 |
dy,
|
878 |
x,
|
879 |
weight,
|
@@ -890,8 +981,10 @@ class LayerNormFn(torch.autograd.Function):
|
|
890 |
rowscale,
|
891 |
ctx.has_residual,
|
892 |
ctx.has_x1,
|
|
|
893 |
ctx.is_rms_norm,
|
894 |
x_dtype=ctx.x_dtype,
|
|
|
895 |
)
|
896 |
return (
|
897 |
dx.reshape(ctx.x_shape_og),
|
@@ -910,6 +1003,8 @@ class LayerNormFn(torch.autograd.Function):
|
|
910 |
None,
|
911 |
None,
|
912 |
None,
|
|
|
|
|
913 |
)
|
914 |
|
915 |
|
@@ -926,10 +1021,12 @@ def layer_norm_fn(
|
|
926 |
rowscale=None,
|
927 |
prenorm=False,
|
928 |
residual_in_fp32=False,
|
|
|
929 |
is_rms_norm=False,
|
930 |
return_dropout_mask=False,
|
|
|
931 |
out=None,
|
932 |
-
residual_out=None
|
933 |
):
|
934 |
return LayerNormFn.apply(
|
935 |
x,
|
@@ -944,10 +1041,12 @@ def layer_norm_fn(
|
|
944 |
rowscale,
|
945 |
prenorm,
|
946 |
residual_in_fp32,
|
|
|
947 |
is_rms_norm,
|
948 |
return_dropout_mask,
|
|
|
949 |
out,
|
950 |
-
residual_out
|
951 |
)
|
952 |
|
953 |
|
@@ -964,9 +1063,11 @@ def rms_norm_fn(
|
|
964 |
rowscale=None,
|
965 |
prenorm=False,
|
966 |
residual_in_fp32=False,
|
|
|
967 |
return_dropout_mask=False,
|
|
|
968 |
out=None,
|
969 |
-
residual_out=None
|
970 |
):
|
971 |
return LayerNormFn.apply(
|
972 |
x,
|
@@ -981,16 +1082,19 @@ def rms_norm_fn(
|
|
981 |
rowscale,
|
982 |
prenorm,
|
983 |
residual_in_fp32,
|
|
|
984 |
True,
|
985 |
return_dropout_mask,
|
|
|
986 |
out,
|
987 |
-
residual_out
|
988 |
)
|
989 |
|
990 |
|
991 |
class RMSNorm(torch.nn.Module):
|
992 |
|
993 |
-
def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0,
|
|
|
994 |
factory_kwargs = {"device": device, "dtype": dtype}
|
995 |
super().__init__()
|
996 |
self.eps = eps
|
@@ -998,12 +1102,16 @@ class RMSNorm(torch.nn.Module):
|
|
998 |
self.drop = torch.nn.Dropout(dropout_p)
|
999 |
else:
|
1000 |
self.drop = None
|
|
|
1001 |
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
1002 |
self.register_parameter("bias", None)
|
1003 |
self.reset_parameters()
|
1004 |
|
1005 |
def reset_parameters(self):
|
1006 |
-
|
|
|
|
|
|
|
1007 |
|
1008 |
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
1009 |
return rms_norm_fn(
|
@@ -1015,12 +1123,14 @@ class RMSNorm(torch.nn.Module):
|
|
1015 |
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
|
1016 |
prenorm=prenorm,
|
1017 |
residual_in_fp32=residual_in_fp32,
|
|
|
1018 |
)
|
1019 |
|
1020 |
|
1021 |
class LayerNormLinearFn(torch.autograd.Function):
|
|
|
1022 |
@staticmethod
|
1023 |
-
@custom_fwd
|
1024 |
def forward(
|
1025 |
ctx,
|
1026 |
x,
|
@@ -1036,17 +1146,12 @@ class LayerNormLinearFn(torch.autograd.Function):
|
|
1036 |
):
|
1037 |
x_shape_og = x.shape
|
1038 |
# reshape input data into 2D tensor
|
1039 |
-
x = x.reshape(-1, x.shape[-1])
|
1040 |
-
if x.stride(-1) != 1:
|
1041 |
-
x = x.contiguous()
|
1042 |
if residual is not None:
|
1043 |
assert residual.shape == x_shape_og
|
1044 |
-
residual = residual.reshape(-1, residual.shape[-1])
|
1045 |
-
if residual.stride(-1) != 1:
|
1046 |
-
residual = residual.contiguous()
|
1047 |
norm_weight = norm_weight.contiguous()
|
1048 |
-
|
1049 |
-
norm_bias = norm_bias.contiguous()
|
1050 |
residual_dtype = (
|
1051 |
residual.dtype
|
1052 |
if residual is not None
|
@@ -1058,25 +1163,17 @@ class LayerNormLinearFn(torch.autograd.Function):
|
|
1058 |
norm_bias,
|
1059 |
eps,
|
1060 |
residual,
|
1061 |
-
out_dtype=(
|
1062 |
-
None
|
1063 |
-
if not torch.is_autocast_enabled()
|
1064 |
-
else torch.get_autocast_gpu_dtype()
|
1065 |
-
),
|
1066 |
residual_dtype=residual_dtype,
|
1067 |
is_rms_norm=is_rms_norm,
|
1068 |
)
|
1069 |
y = y.reshape(x_shape_og)
|
1070 |
-
dtype = (
|
1071 |
-
torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
|
1072 |
-
)
|
1073 |
linear_weight = linear_weight.to(dtype)
|
1074 |
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
|
1075 |
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
|
1076 |
# We don't store y, will be recomputed in the backward pass to save memory
|
1077 |
-
ctx.save_for_backward(
|
1078 |
-
residual_out, norm_weight, norm_bias, linear_weight, mean, rstd
|
1079 |
-
)
|
1080 |
ctx.x_shape_og = x_shape_og
|
1081 |
ctx.eps = eps
|
1082 |
ctx.is_rms_norm = is_rms_norm
|
@@ -1087,20 +1184,17 @@ class LayerNormLinearFn(torch.autograd.Function):
|
|
1087 |
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
|
1088 |
|
1089 |
@staticmethod
|
1090 |
-
@custom_bwd
|
1091 |
def backward(ctx, dout, *args):
|
1092 |
x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
|
1093 |
dout = dout.reshape(-1, dout.shape[-1])
|
1094 |
dy = F.linear(dout, linear_weight.t())
|
1095 |
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
|
1096 |
-
|
1097 |
-
dy = dy.contiguous()
|
1098 |
assert dy.shape == x.shape
|
1099 |
if ctx.prenorm:
|
1100 |
dresidual = args[0]
|
1101 |
-
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
1102 |
-
if dresidual.stride(-1) != 1:
|
1103 |
-
dresidual = dresidual.contiguous()
|
1104 |
assert dresidual.shape == x.shape
|
1105 |
else:
|
1106 |
dresidual = None
|
|
|
7 |
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
8 |
|
9 |
import math
|
10 |
+
from typing import Optional, List
|
11 |
|
12 |
import torch
|
13 |
import torch.nn.functional as F
|
14 |
+
from torch import Tensor
|
15 |
|
16 |
import triton
|
17 |
import triton.language as tl
|
18 |
|
19 |
+
from ._ops import add_op_namespace_prefix
|
20 |
+
from .utils.torch import custom_fwd, custom_bwd
|
21 |
+
from .utils.library import triton_op
|
22 |
+
|
23 |
+
|
24 |
+
def maybe_contiguous_lastdim(x):
|
25 |
+
return x.contiguous() if x is not None and x.stride(-1) != 1 else x
|
26 |
+
|
27 |
+
|
28 |
+
def maybe_contiguous(x):
|
29 |
+
return x.contiguous() if x is not None else None
|
30 |
+
|
31 |
+
|
32 |
+
def triton_autotune_configs():
|
33 |
+
# Return configs with a valid warp count for the current device
|
34 |
+
configs = []
|
35 |
+
# Maximum threads per block is architecture-dependent in theory, but in reality all are 1024
|
36 |
+
max_threads_per_block = 1024
|
37 |
+
# Default to warp size 32 if not defined by device
|
38 |
+
warp_size = getattr(torch.cuda.get_device_properties(torch.cuda.current_device()), "warp_size", 32)
|
39 |
+
# Autotune for warp counts which are powers of 2 and do not exceed thread per block limit
|
40 |
+
return [triton.Config({}, num_warps=warp_count) for warp_count in [1, 2, 4, 8, 16, 32]
|
41 |
+
if warp_count * warp_size <= max_threads_per_block]
|
42 |
+
# return [triton.Config({}, num_warps=8)]
|
43 |
+
|
44 |
|
45 |
def layer_norm_ref(
|
46 |
x,
|
|
|
54 |
dropout_p=0.0,
|
55 |
rowscale=None,
|
56 |
prenorm=False,
|
57 |
+
zero_centered_weight=False,
|
58 |
dropout_mask=None,
|
59 |
dropout_mask1=None,
|
60 |
upcast=False,
|
|
|
68 |
x1 = x1.float() if x1 is not None else None
|
69 |
weight1 = weight1.float() if weight1 is not None else None
|
70 |
bias1 = bias1.float() if bias1 is not None else None
|
71 |
+
if zero_centered_weight:
|
72 |
+
weight = weight + 1.0
|
73 |
+
if weight1 is not None:
|
74 |
+
weight1 = weight1 + 1.0
|
75 |
if x1 is not None:
|
76 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
77 |
if rowscale is not None:
|
|
|
90 |
x = x + x1
|
91 |
if residual is not None:
|
92 |
x = (x + residual).to(x.dtype)
|
93 |
+
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
|
94 |
+
dtype
|
95 |
+
)
|
96 |
if weight1 is None:
|
97 |
return out if not prenorm else (out, x)
|
98 |
else:
|
|
|
114 |
dropout_p=0.0,
|
115 |
rowscale=None,
|
116 |
prenorm=False,
|
117 |
+
zero_centered_weight=False,
|
118 |
dropout_mask=None,
|
119 |
dropout_mask1=None,
|
120 |
upcast=False,
|
|
|
128 |
x1 = x1.float() if x1 is not None else None
|
129 |
weight1 = weight1.float() if weight1 is not None else None
|
130 |
bias1 = bias1.float() if bias1 is not None else None
|
131 |
+
if zero_centered_weight:
|
132 |
+
weight = weight + 1.0
|
133 |
+
if weight1 is not None:
|
134 |
+
weight1 = weight1 + 1.0
|
135 |
if x1 is not None:
|
136 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
137 |
if rowscale is not None:
|
|
|
151 |
if residual is not None:
|
152 |
x = (x + residual).to(x.dtype)
|
153 |
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
154 |
+
out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(dtype)
|
|
|
|
|
155 |
if weight1 is None:
|
156 |
return out if not prenorm else (out, x)
|
157 |
else:
|
158 |
+
out1 = ((x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)).to(
|
159 |
+
dtype
|
160 |
+
)
|
161 |
return (out, out1) if not prenorm else (out, out1, x)
|
162 |
|
163 |
|
164 |
@triton.autotune(
|
165 |
+
configs=triton_autotune_configs(),
|
166 |
+
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS", "HAS_X1", "HAS_W1", "HAS_B1"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
)
|
168 |
+
# torch compile doesn't like triton.heuristics, so we set these manually when calling the kernel
|
169 |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
170 |
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
171 |
+
# @triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
|
172 |
+
# @triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
|
173 |
+
# @triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
|
174 |
@triton.jit
|
175 |
def _layer_norm_fwd_1pass_kernel(
|
176 |
X, # pointer to the input
|
|
|
186 |
ROWSCALE,
|
187 |
SEEDS, # Dropout seeds for each row
|
188 |
DROPOUT_MASK,
|
189 |
+
DROPOUT_MASK1,
|
190 |
Mean, # pointer to the mean
|
191 |
Rstd, # pointer to the 1/std
|
192 |
stride_x_row, # how much to increase the pointer when moving by 1 row
|
|
|
199 |
N, # number of columns in X
|
200 |
eps, # epsilon to avoid division by zero
|
201 |
dropout_p, # Dropout probability
|
202 |
+
zero_centered_weight, # If true, add 1.0 to the weight
|
203 |
IS_RMS_NORM: tl.constexpr,
|
204 |
BLOCK_N: tl.constexpr,
|
205 |
HAS_RESIDUAL: tl.constexpr,
|
|
|
233 |
if HAS_DROPOUT:
|
234 |
# Compute dropout mask
|
235 |
# 7 rounds is good enough, and reduces register pressure
|
236 |
+
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
|
|
|
|
237 |
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
|
238 |
if STORE_DROPOUT_MASK:
|
239 |
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
|
|
|
246 |
# Compute dropout mask
|
247 |
# 7 rounds is good enough, and reduces register pressure
|
248 |
keep_mask = (
|
249 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
|
|
250 |
)
|
251 |
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
|
252 |
if STORE_DROPOUT_MASK:
|
253 |
+
tl.store(DROPOUT_MASK1 + row * N + cols, keep_mask, mask=cols < N)
|
254 |
x += x1
|
255 |
if HAS_RESIDUAL:
|
256 |
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
|
|
270 |
# Normalize and apply linear transformation
|
271 |
mask = cols < N
|
272 |
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
273 |
+
if zero_centered_weight:
|
274 |
+
w += 1.0
|
275 |
if HAS_BIAS:
|
276 |
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
277 |
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
|
|
280 |
tl.store(Y + cols, y, mask=mask)
|
281 |
if HAS_W1:
|
282 |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
283 |
+
if zero_centered_weight:
|
284 |
+
w1 += 1.0
|
285 |
if HAS_B1:
|
286 |
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
|
287 |
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
|
|
|
289 |
|
290 |
|
291 |
def _layer_norm_fwd(
|
292 |
+
x: Tensor,
|
293 |
+
weight: Tensor,
|
294 |
+
bias: Tensor,
|
295 |
+
eps: float,
|
296 |
+
residual: Optional[Tensor] = None,
|
297 |
+
x1: Optional[Tensor] = None,
|
298 |
+
weight1: Optional[Tensor] = None,
|
299 |
+
bias1: Optional[Tensor] = None,
|
300 |
+
dropout_p: float = 0.0,
|
301 |
+
rowscale: Optional[Tensor] = None,
|
302 |
+
out_dtype: Optional[torch.dtype] = None,
|
303 |
+
residual_dtype: Optional[torch.dtype] = None,
|
304 |
+
zero_centered_weight: bool = False,
|
305 |
+
is_rms_norm: bool = False,
|
306 |
+
return_dropout_mask: bool = False,
|
307 |
+
out: Optional[Tensor] = None,
|
308 |
+
residual_out: Optional[Tensor] = None
|
309 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
310 |
+
# Need to wrap to handle the case where residual_out is a alias of x, which makes torch.library
|
311 |
+
# and torch.compile unhappy. Also allocate memory for out and residual_out if they are None
|
312 |
+
# so that _layer_norm_fwd_impl doesn't have to return them.
|
313 |
+
if out is None:
|
314 |
+
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
315 |
if residual is not None:
|
316 |
residual_dtype = residual.dtype
|
317 |
+
if residual_out is None and (
|
318 |
+
residual is not None
|
319 |
+
or (residual_dtype is not None and residual_dtype != x.dtype)
|
320 |
+
or dropout_p > 0.0
|
321 |
+
or rowscale is not None
|
322 |
+
or x1 is not None
|
323 |
+
):
|
324 |
+
residual_out = torch.empty_like(
|
325 |
+
x, dtype=residual_dtype if residual_dtype is not None else x.dtype
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
residual_out = None
|
329 |
+
y1, mean, rstd, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd_impl(
|
330 |
+
x,
|
331 |
+
weight,
|
332 |
+
bias,
|
333 |
+
eps,
|
334 |
+
out,
|
335 |
+
residual=residual,
|
336 |
+
x1=x1,
|
337 |
+
weight1=weight1,
|
338 |
+
bias1=bias1,
|
339 |
+
dropout_p=dropout_p,
|
340 |
+
rowscale=rowscale,
|
341 |
+
zero_centered_weight=zero_centered_weight,
|
342 |
+
is_rms_norm=is_rms_norm,
|
343 |
+
return_dropout_mask=return_dropout_mask,
|
344 |
+
residual_out=residual_out,
|
345 |
+
)
|
346 |
+
# residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
|
347 |
+
if residual_out is None:
|
348 |
+
residual_out = x
|
349 |
+
return out, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1
|
350 |
+
|
351 |
+
|
352 |
+
# [2025-04-28] torch.library.triton_op ignores the schema argument, but here we need the schema
|
353 |
+
# since we're returning a tuple of tensors
|
354 |
+
@triton_op(add_op_namespace_prefix("layer_norm_fwd_impl"), mutates_args={"out", "residual_out"},
|
355 |
+
schema="(Tensor x, Tensor weight, Tensor bias, float eps, Tensor(a!) out, Tensor? residual, Tensor? x1, Tensor? weight1, Tensor? bias1, float dropout_p, Tensor? rowscale, bool zero_centered_weight, bool is_rms_norm, bool return_dropout_mask, Tensor(a!)? residual_out) -> (Tensor y1, Tensor mean, Tensor rstd, Tensor seeds, Tensor dropout_mask, Tensor dropout_mask1)")
|
356 |
+
def _layer_norm_fwd_impl(
|
357 |
+
x: Tensor,
|
358 |
+
weight: Tensor,
|
359 |
+
bias: Tensor,
|
360 |
+
eps: float,
|
361 |
+
out: Tensor,
|
362 |
+
residual: Optional[Tensor] = None,
|
363 |
+
x1: Optional[Tensor] = None,
|
364 |
+
weight1: Optional[Tensor] = None,
|
365 |
+
bias1: Optional[Tensor] = None,
|
366 |
+
dropout_p: float = 0.0,
|
367 |
+
rowscale: Optional[Tensor] = None,
|
368 |
+
zero_centered_weight: bool = False,
|
369 |
+
is_rms_norm: bool = False,
|
370 |
+
return_dropout_mask: bool = False,
|
371 |
+
residual_out: Optional[Tensor] = None
|
372 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
373 |
M, N = x.shape
|
374 |
assert x.stride(-1) == 1
|
375 |
if residual is not None:
|
|
|
393 |
if rowscale is not None:
|
394 |
assert rowscale.is_contiguous()
|
395 |
assert rowscale.shape == (M,)
|
396 |
+
assert out.shape == x.shape
|
|
|
|
|
|
|
|
|
397 |
assert out.stride(-1) == 1
|
398 |
+
if residual_out is not None:
|
399 |
+
assert residual_out.shape == x.shape
|
400 |
+
assert residual_out.stride(-1) == 1
|
401 |
if weight1 is not None:
|
402 |
y1 = torch.empty_like(out)
|
403 |
assert y1.stride(-1) == 1
|
404 |
else:
|
405 |
y1 = None
|
406 |
+
mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
408 |
if dropout_p > 0.0:
|
409 |
seeds = torch.randint(
|
|
|
412 |
else:
|
413 |
seeds = None
|
414 |
if return_dropout_mask and dropout_p > 0.0:
|
415 |
+
dropout_mask = torch.empty(M, N, device=x.device, dtype=torch.bool)
|
416 |
+
if x1 is not None:
|
417 |
+
dropout_mask1 = torch.empty(M, N, device=x.device, dtype=torch.bool)
|
418 |
+
else:
|
419 |
+
dropout_mask1 = None
|
420 |
else:
|
421 |
+
dropout_mask, dropout_mask1 = None, None
|
422 |
# Less than 64KB per feature: enqueue fused kernel
|
423 |
MAX_FUSED_SIZE = 65536 // x.element_size()
|
424 |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
425 |
if N > BLOCK_N:
|
426 |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
427 |
with torch.cuda.device(x.device.index):
|
428 |
+
torch.library.wrap_triton(_layer_norm_fwd_1pass_kernel)[(M,)](
|
429 |
x,
|
430 |
out,
|
431 |
weight,
|
|
|
439 |
rowscale,
|
440 |
seeds,
|
441 |
dropout_mask,
|
442 |
+
dropout_mask1,
|
443 |
mean,
|
444 |
rstd,
|
445 |
x.stride(0),
|
|
|
452 |
N,
|
453 |
eps,
|
454 |
dropout_p,
|
455 |
+
# Passing bool make torch inductor very unhappy since it then tries to compare to int_max
|
456 |
+
int(zero_centered_weight),
|
457 |
is_rms_norm,
|
458 |
BLOCK_N,
|
459 |
residual is not None,
|
|
|
462 |
dropout_p > 0.0,
|
463 |
dropout_mask is not None,
|
464 |
rowscale is not None,
|
465 |
+
HAS_X1=x1 is not None,
|
466 |
+
HAS_W1=weight1 is not None,
|
467 |
+
HAS_B1=bias1 is not None,
|
468 |
)
|
469 |
+
return y1, mean, rstd, seeds, dropout_mask, dropout_mask1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
|
472 |
@triton.autotune(
|
473 |
+
configs=triton_autotune_configs(),
|
474 |
+
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
)
|
476 |
+
# torch compile doesn't like triton.heuristics, so we set these manually when calling the kernel
|
477 |
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
478 |
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
479 |
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
480 |
+
# @triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
|
481 |
+
# @triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
|
482 |
+
# @triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
|
483 |
+
# @triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
|
484 |
+
# @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
485 |
@triton.jit
|
486 |
def _layer_norm_bwd_kernel(
|
487 |
X, # pointer to the input
|
|
|
515 |
N, # number of columns in X
|
516 |
eps, # epsilon to avoid division by zero
|
517 |
dropout_p,
|
518 |
+
zero_centered_weight,
|
519 |
rows_per_program,
|
520 |
IS_RMS_NORM: tl.constexpr,
|
521 |
BLOCK_N: tl.constexpr,
|
|
|
549 |
if RECOMPUTE_OUTPUT:
|
550 |
Y += row_start * stride_y_row
|
551 |
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
552 |
+
if zero_centered_weight:
|
553 |
+
w += 1.0
|
554 |
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
555 |
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
556 |
if HAS_DY1:
|
557 |
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
558 |
+
if zero_centered_weight:
|
559 |
+
w1 += 1.0
|
560 |
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
561 |
if HAS_BIAS:
|
562 |
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
|
605 |
if HAS_DX1:
|
606 |
if HAS_DROPOUT:
|
607 |
keep_mask = (
|
608 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
|
|
609 |
)
|
610 |
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
611 |
else:
|
612 |
dx1 = dx
|
613 |
tl.store(DX1 + cols, dx1, mask=mask)
|
614 |
if HAS_DROPOUT:
|
615 |
+
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
|
|
|
|
|
|
616 |
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
617 |
if HAS_ROWSCALE:
|
618 |
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
|
|
642 |
|
643 |
|
644 |
def _layer_norm_bwd(
|
645 |
+
dy: Tensor,
|
646 |
+
x: Tensor,
|
647 |
+
weight: Tensor,
|
648 |
+
bias: Tensor,
|
649 |
+
eps: float,
|
650 |
+
mean: Tensor,
|
651 |
+
rstd: Tensor,
|
652 |
+
dresidual: Optional[Tensor] = None,
|
653 |
+
dy1: Optional[Tensor] = None,
|
654 |
+
weight1: Optional[Tensor] = None,
|
655 |
+
bias1: Optional[Tensor] = None,
|
656 |
+
seeds: Optional[Tensor] = None,
|
657 |
+
dropout_p: float = 0.0,
|
658 |
+
rowscale: Optional[Tensor] = None,
|
659 |
+
has_residual: bool = False,
|
660 |
+
has_x1: bool = False,
|
661 |
+
zero_centered_weight: bool = False,
|
662 |
+
is_rms_norm: bool = False,
|
663 |
+
x_dtype: Optional[torch.dtype] = None,
|
664 |
+
recompute_output: bool = False,
|
665 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
666 |
+
# Need to wrap to handle the case where dresidual_in or dx1 are aliases of x,
|
667 |
+
# which makes torch.library unhappy
|
668 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1, y = _layer_norm_bwd_impl(
|
669 |
+
dy,
|
670 |
+
x,
|
671 |
+
weight,
|
672 |
+
bias,
|
673 |
+
eps,
|
674 |
+
mean,
|
675 |
+
rstd,
|
676 |
+
dresidual,
|
677 |
+
dy1,
|
678 |
+
weight1,
|
679 |
+
bias1,
|
680 |
+
seeds,
|
681 |
+
dropout_p,
|
682 |
+
rowscale,
|
683 |
+
has_residual,
|
684 |
+
has_x1,
|
685 |
+
zero_centered_weight,
|
686 |
+
is_rms_norm,
|
687 |
+
x_dtype=x_dtype,
|
688 |
+
recompute_output=recompute_output,
|
689 |
+
)
|
690 |
+
# Don't need to compute dresidual_in separately in this case
|
691 |
+
if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
|
692 |
+
dresidual_in = dx
|
693 |
+
if has_x1 and dropout_p == 0.0:
|
694 |
+
dx1 = dx
|
695 |
+
return dx, dw, db, dresidual_in, dx1, dw1, db1, y
|
696 |
+
|
697 |
+
|
698 |
+
|
699 |
+
@triton_op(add_op_namespace_prefix("layer_norm_bwd_impl"), mutates_args={},
|
700 |
+
schema="(Tensor dy, Tensor x, Tensor weight, Tensor bias, float eps, Tensor mean, Tensor rstd, Tensor? dresidual, Tensor? dy1, Tensor? weight1, Tensor? bias1, Tensor? seeds, float dropout_p, Tensor? rowscale, bool has_residual, bool has_x1, bool zero_centered_weight, bool is_rms_norm, ScalarType? x_dtype, bool recompute_output) -> (Tensor dx, Tensor dw, Tensor db, Tensor dresidual_in, Tensor dx1, Tensor dw1, Tensor db1, Tensor y)",
|
701 |
+
allow_decomposition=False, # Don't let torch.compile trace inside
|
702 |
+
)
|
703 |
+
def _layer_norm_bwd_impl(
|
704 |
+
dy: Tensor,
|
705 |
+
x: Tensor,
|
706 |
+
weight: Tensor,
|
707 |
+
bias: Tensor,
|
708 |
+
eps: float,
|
709 |
+
mean: Tensor,
|
710 |
+
rstd: Tensor,
|
711 |
+
dresidual: Optional[Tensor] = None,
|
712 |
+
dy1: Optional[Tensor] = None,
|
713 |
+
weight1: Optional[Tensor] = None,
|
714 |
+
bias1: Optional[Tensor] = None,
|
715 |
+
seeds: Optional[Tensor] = None,
|
716 |
+
dropout_p: float = 0.0,
|
717 |
+
rowscale: Optional[Tensor] = None,
|
718 |
+
has_residual: bool = False,
|
719 |
+
has_x1: bool = False,
|
720 |
+
zero_centered_weight: bool = False,
|
721 |
+
is_rms_norm: bool = False,
|
722 |
+
x_dtype: Optional[torch.dtype] = None,
|
723 |
+
recompute_output: bool = False,
|
724 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
725 |
M, N = x.shape
|
726 |
assert x.stride(-1) == 1
|
727 |
+
dy = maybe_contiguous_lastdim(dy)
|
728 |
assert dy.stride(-1) == 1
|
729 |
assert dy.shape == (M, N)
|
730 |
if dresidual is not None:
|
731 |
+
dresidual = maybe_contiguous_lastdim(dresidual)
|
732 |
assert dresidual.stride(-1) == 1
|
733 |
assert dresidual.shape == (M, N)
|
734 |
assert weight.shape == (N,)
|
|
|
737 |
assert bias.stride(-1) == 1
|
738 |
assert bias.shape == (N,)
|
739 |
if dy1 is not None:
|
740 |
+
dy1 = maybe_contiguous_lastdim(dy1)
|
741 |
assert weight1 is not None
|
742 |
assert dy1.shape == dy.shape
|
743 |
assert dy1.stride(-1) == 1
|
|
|
766 |
else None
|
767 |
)
|
768 |
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
|
769 |
+
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
|
|
|
|
|
|
|
|
|
770 |
if recompute_output:
|
771 |
+
assert weight1 is None, "recompute_output is not supported with parallel LayerNorm"
|
|
|
|
|
772 |
|
773 |
# Less than 64KB per feature: enqueue fused kernel
|
774 |
MAX_FUSED_SIZE = 65536 // x.element_size()
|
775 |
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
776 |
if N > BLOCK_N:
|
777 |
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
778 |
+
# Increasing the multiple (e.g. 8) will allow more thread blocks to be launched and hide the
|
779 |
+
# latency of the gmem reads/writes, but will increase the time of summing up dw / db.
|
780 |
+
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count * 8
|
781 |
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
782 |
_db = (
|
783 |
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
|
|
789 |
rows_per_program = math.ceil(M / sm_count)
|
790 |
grid = (sm_count,)
|
791 |
with torch.cuda.device(x.device.index):
|
792 |
+
torch.library.wrap_triton(_layer_norm_bwd_kernel)[grid](
|
793 |
x,
|
794 |
weight,
|
795 |
bias,
|
|
|
821 |
N,
|
822 |
eps,
|
823 |
dropout_p,
|
824 |
+
# Passing bool make torch inductor very unhappy since it then tries to compare to int_max
|
825 |
+
int(zero_centered_weight),
|
826 |
rows_per_program,
|
827 |
is_rms_norm,
|
828 |
BLOCK_N,
|
|
|
830 |
dresidual_in is not None,
|
831 |
bias is not None,
|
832 |
dropout_p > 0.0,
|
833 |
+
HAS_ROWSCALE=rowscale is not None,
|
834 |
+
HAS_DY1=dy1 is not None,
|
835 |
+
HAS_DX1=dx1 is not None,
|
836 |
+
HAS_B1=bias1 is not None,
|
837 |
+
RECOMPUTE_OUTPUT=y is not None,
|
838 |
)
|
839 |
dw = _dw.sum(0).to(weight.dtype)
|
840 |
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
841 |
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
|
842 |
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
|
843 |
+
# dresidual_in and dx1 could be None, the wrapper will handle assigning them from dx
|
844 |
+
return dx, dw, db, dresidual_in, dx1, dw1, db1, y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
845 |
|
846 |
|
847 |
class LayerNormFn(torch.autograd.Function):
|
848 |
+
|
849 |
@staticmethod
|
850 |
def forward(
|
851 |
ctx,
|
|
|
861 |
rowscale=None,
|
862 |
prenorm=False,
|
863 |
residual_in_fp32=False,
|
864 |
+
zero_centered_weight=False,
|
865 |
is_rms_norm=False,
|
866 |
return_dropout_mask=False,
|
867 |
+
out_dtype=None,
|
868 |
out=None,
|
869 |
+
residual_out=None
|
870 |
):
|
871 |
x_shape_og = x.shape
|
872 |
# reshape input data into 2D tensor
|
873 |
+
x = maybe_contiguous_lastdim(x.reshape(-1, x.shape[-1]))
|
|
|
|
|
874 |
if residual is not None:
|
875 |
assert residual.shape == x_shape_og
|
876 |
+
residual = maybe_contiguous_lastdim(residual.reshape(-1, residual.shape[-1]))
|
|
|
|
|
877 |
if x1 is not None:
|
878 |
assert x1.shape == x_shape_og
|
879 |
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
880 |
+
x1 = maybe_contiguous_lastdim(x1.reshape(-1, x1.shape[-1]))
|
|
|
|
|
881 |
weight = weight.contiguous()
|
882 |
+
bias = maybe_contiguous(bias)
|
883 |
+
weight1 = maybe_contiguous(weight1)
|
884 |
+
bias1 = maybe_contiguous(bias1)
|
|
|
|
|
|
|
885 |
if rowscale is not None:
|
886 |
rowscale = rowscale.reshape(-1).contiguous()
|
887 |
residual_dtype = (
|
|
|
893 |
out = out.reshape(-1, out.shape[-1])
|
894 |
if residual_out is not None:
|
895 |
residual_out = residual_out.reshape(-1, residual_out.shape[-1])
|
896 |
+
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
|
897 |
+
x,
|
898 |
+
weight,
|
899 |
+
bias,
|
900 |
+
eps,
|
901 |
+
residual,
|
902 |
+
x1,
|
903 |
+
weight1,
|
904 |
+
bias1,
|
905 |
+
dropout_p=dropout_p,
|
906 |
+
rowscale=rowscale,
|
907 |
+
out_dtype=out_dtype,
|
908 |
+
residual_dtype=residual_dtype,
|
909 |
+
zero_centered_weight=zero_centered_weight,
|
910 |
+
is_rms_norm=is_rms_norm,
|
911 |
+
return_dropout_mask=return_dropout_mask,
|
912 |
+
out=out,
|
913 |
+
residual_out=residual_out,
|
914 |
)
|
915 |
ctx.save_for_backward(
|
916 |
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
|
|
|
923 |
ctx.has_x1 = x1 is not None
|
924 |
ctx.prenorm = prenorm
|
925 |
ctx.x_dtype = x.dtype
|
926 |
+
ctx.zero_centered_weight = zero_centered_weight
|
927 |
y = y.reshape(x_shape_og)
|
928 |
y1 = y1.reshape(x_shape_og) if y1 is not None else None
|
929 |
+
residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None
|
930 |
+
dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
|
931 |
+
dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
|
|
|
|
|
|
|
|
|
|
|
|
|
932 |
if not return_dropout_mask:
|
933 |
if weight1 is None:
|
934 |
return y if not prenorm else (y, residual_out)
|
|
|
952 |
def backward(ctx, dy, *args):
|
953 |
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
|
954 |
dy = dy.reshape(-1, dy.shape[-1])
|
|
|
|
|
|
|
955 |
if weight1 is not None:
|
956 |
dy1, args = args[0], args[1:]
|
957 |
dy1 = dy1.reshape(-1, dy1.shape[-1])
|
|
|
|
|
958 |
assert dy1.shape == x.shape
|
959 |
else:
|
960 |
dy1 = None
|
961 |
if ctx.prenorm:
|
962 |
dresidual = args[0]
|
963 |
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
|
|
|
|
964 |
assert dresidual.shape == x.shape
|
965 |
else:
|
966 |
dresidual = None
|
967 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1, _ = _layer_norm_bwd(
|
968 |
dy,
|
969 |
x,
|
970 |
weight,
|
|
|
981 |
rowscale,
|
982 |
ctx.has_residual,
|
983 |
ctx.has_x1,
|
984 |
+
ctx.zero_centered_weight,
|
985 |
ctx.is_rms_norm,
|
986 |
x_dtype=ctx.x_dtype,
|
987 |
+
recompute_output=False,
|
988 |
)
|
989 |
return (
|
990 |
dx.reshape(ctx.x_shape_og),
|
|
|
1003 |
None,
|
1004 |
None,
|
1005 |
None,
|
1006 |
+
None,
|
1007 |
+
None,
|
1008 |
)
|
1009 |
|
1010 |
|
|
|
1021 |
rowscale=None,
|
1022 |
prenorm=False,
|
1023 |
residual_in_fp32=False,
|
1024 |
+
zero_centered_weight=False,
|
1025 |
is_rms_norm=False,
|
1026 |
return_dropout_mask=False,
|
1027 |
+
out_dtype=None,
|
1028 |
out=None,
|
1029 |
+
residual_out=None
|
1030 |
):
|
1031 |
return LayerNormFn.apply(
|
1032 |
x,
|
|
|
1041 |
rowscale,
|
1042 |
prenorm,
|
1043 |
residual_in_fp32,
|
1044 |
+
zero_centered_weight,
|
1045 |
is_rms_norm,
|
1046 |
return_dropout_mask,
|
1047 |
+
out_dtype,
|
1048 |
out,
|
1049 |
+
residual_out
|
1050 |
)
|
1051 |
|
1052 |
|
|
|
1063 |
rowscale=None,
|
1064 |
prenorm=False,
|
1065 |
residual_in_fp32=False,
|
1066 |
+
zero_centered_weight=False,
|
1067 |
return_dropout_mask=False,
|
1068 |
+
out_dtype=None,
|
1069 |
out=None,
|
1070 |
+
residual_out=None
|
1071 |
):
|
1072 |
return LayerNormFn.apply(
|
1073 |
x,
|
|
|
1082 |
rowscale,
|
1083 |
prenorm,
|
1084 |
residual_in_fp32,
|
1085 |
+
zero_centered_weight,
|
1086 |
True,
|
1087 |
return_dropout_mask,
|
1088 |
+
out_dtype,
|
1089 |
out,
|
1090 |
+
residual_out
|
1091 |
)
|
1092 |
|
1093 |
|
1094 |
class RMSNorm(torch.nn.Module):
|
1095 |
|
1096 |
+
def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, zero_centered_weight=False,
|
1097 |
+
device=None, dtype=None):
|
1098 |
factory_kwargs = {"device": device, "dtype": dtype}
|
1099 |
super().__init__()
|
1100 |
self.eps = eps
|
|
|
1102 |
self.drop = torch.nn.Dropout(dropout_p)
|
1103 |
else:
|
1104 |
self.drop = None
|
1105 |
+
self.zero_centered_weight = zero_centered_weight
|
1106 |
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
1107 |
self.register_parameter("bias", None)
|
1108 |
self.reset_parameters()
|
1109 |
|
1110 |
def reset_parameters(self):
|
1111 |
+
if not self.zero_centered_weight:
|
1112 |
+
torch.nn.init.ones_(self.weight)
|
1113 |
+
else:
|
1114 |
+
torch.nn.init.zeros_(self.weight)
|
1115 |
|
1116 |
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
1117 |
return rms_norm_fn(
|
|
|
1123 |
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
|
1124 |
prenorm=prenorm,
|
1125 |
residual_in_fp32=residual_in_fp32,
|
1126 |
+
zero_centered_weight=self.zero_centered_weight,
|
1127 |
)
|
1128 |
|
1129 |
|
1130 |
class LayerNormLinearFn(torch.autograd.Function):
|
1131 |
+
|
1132 |
@staticmethod
|
1133 |
+
@custom_fwd
|
1134 |
def forward(
|
1135 |
ctx,
|
1136 |
x,
|
|
|
1146 |
):
|
1147 |
x_shape_og = x.shape
|
1148 |
# reshape input data into 2D tensor
|
1149 |
+
x = maybe_contiguous_lastdim(x.reshape(-1, x.shape[-1]))
|
|
|
|
|
1150 |
if residual is not None:
|
1151 |
assert residual.shape == x_shape_og
|
1152 |
+
residual = maybe_contiguous_lastdim(residual.reshape(-1, residual.shape[-1]))
|
|
|
|
|
1153 |
norm_weight = norm_weight.contiguous()
|
1154 |
+
norm_bias = maybe_contiguous(norm_bias)
|
|
|
1155 |
residual_dtype = (
|
1156 |
residual.dtype
|
1157 |
if residual is not None
|
|
|
1163 |
norm_bias,
|
1164 |
eps,
|
1165 |
residual,
|
1166 |
+
out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_dtype("cuda"),
|
|
|
|
|
|
|
|
|
1167 |
residual_dtype=residual_dtype,
|
1168 |
is_rms_norm=is_rms_norm,
|
1169 |
)
|
1170 |
y = y.reshape(x_shape_og)
|
1171 |
+
dtype = torch.get_autocast_dtype("cuda") if torch.is_autocast_enabled() else y.dtype
|
|
|
|
|
1172 |
linear_weight = linear_weight.to(dtype)
|
1173 |
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
|
1174 |
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
|
1175 |
# We don't store y, will be recomputed in the backward pass to save memory
|
1176 |
+
ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd)
|
|
|
|
|
1177 |
ctx.x_shape_og = x_shape_og
|
1178 |
ctx.eps = eps
|
1179 |
ctx.is_rms_norm = is_rms_norm
|
|
|
1184 |
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
|
1185 |
|
1186 |
@staticmethod
|
1187 |
+
@custom_bwd
|
1188 |
def backward(ctx, dout, *args):
|
1189 |
x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
|
1190 |
dout = dout.reshape(-1, dout.shape[-1])
|
1191 |
dy = F.linear(dout, linear_weight.t())
|
1192 |
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
|
1193 |
+
dy = maybe_contiguous_lastdim(dy)
|
|
|
1194 |
assert dy.shape == x.shape
|
1195 |
if ctx.prenorm:
|
1196 |
dresidual = args[0]
|
1197 |
+
dresidual = maybe_contiguous_lastdim(dresidual.reshape(-1, dresidual.shape[-1]))
|
|
|
|
|
1198 |
assert dresidual.shape == x.shape
|
1199 |
else:
|
1200 |
dresidual = None
|
torch-ext/triton_layer_norm/utils/__init__.py
ADDED
File without changes
|
torch-ext/triton_layer_norm/utils/library.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/pytorch/pytorch/blob/v2.7.0/torch/_library/triton.py
|
2 |
+
# The PyTorch implementation simply ignores the schema argument, we simply modify it to use schema.
|
3 |
+
|
4 |
+
from typing import Optional, Callable, Iterable, Union
|
5 |
+
|
6 |
+
from torch.library import custom_op, CustomOpDef
|
7 |
+
from torch._library.triton import set_wrap_triton_enabled
|
8 |
+
|
9 |
+
|
10 |
+
def triton_op(
|
11 |
+
name: str,
|
12 |
+
fn: Optional[Callable] = None,
|
13 |
+
/,
|
14 |
+
*,
|
15 |
+
mutates_args: Union[str, Iterable[str]],
|
16 |
+
schema: Optional[str] = None,
|
17 |
+
# If allow_decomposition=True, this matches torch.library.triton_op behavior. If set to False,
|
18 |
+
# then it behaves like torch.library.custom_op instead, which doesn't decompose the operator
|
19 |
+
# and so inductor can't trace inside.
|
20 |
+
allow_decomposition=True,
|
21 |
+
) -> Callable:
|
22 |
+
def dec(fn: Callable[..., object]) -> CustomOpDef:
|
23 |
+
def backend_fn(*args, **kwargs): # type: ignore[no-untyped-def]
|
24 |
+
# Optimization: we're passing regular Tensors into the triton kernel, so
|
25 |
+
# no need to go through HOP dispatch
|
26 |
+
with set_wrap_triton_enabled(False):
|
27 |
+
return fn(*args, **kwargs)
|
28 |
+
|
29 |
+
result = custom_op(
|
30 |
+
name,
|
31 |
+
backend_fn,
|
32 |
+
mutates_args=mutates_args,
|
33 |
+
# This is the only difference with the PyTorch implementation
|
34 |
+
schema=schema,
|
35 |
+
)
|
36 |
+
from torch._subclasses.functional_tensor import FunctionalTensorMode
|
37 |
+
|
38 |
+
# We require that the user pass us a function that is make_fx traceable,
|
39 |
+
# so we can just register it as the Fake/meta kernel.
|
40 |
+
result.register_fake(fn)
|
41 |
+
|
42 |
+
if allow_decomposition:
|
43 |
+
# We decompose the operator when FunctionalTensorMode is active.
|
44 |
+
# The goal is to decompose the operator in AOTDispatcher.
|
45 |
+
# - With torch.compile, this means that the backend (usually Inductor)
|
46 |
+
# can see a call to the triton kernel(s) and so it can directly optimize
|
47 |
+
# them by inlining them into the lowering process.
|
48 |
+
def functional_decomp( # type: ignore[no-untyped-def]
|
49 |
+
mode, op, types, args, kwargs
|
50 |
+
):
|
51 |
+
from torch.export._trace import custom_triton_ops_decomposition_disabled
|
52 |
+
|
53 |
+
if custom_triton_ops_decomposition_disabled():
|
54 |
+
return mode.__torch_dispatch__(op, types, args, kwargs)
|
55 |
+
else:
|
56 |
+
with mode:
|
57 |
+
return fn(*args, **kwargs)
|
58 |
+
|
59 |
+
result.register_torch_dispatch(FunctionalTensorMode, functional_decomp)
|
60 |
+
|
61 |
+
return result
|
62 |
+
|
63 |
+
if fn is None:
|
64 |
+
return dec
|
65 |
+
else:
|
66 |
+
return dec(fn)
|
torch-ext/triton_layer_norm/utils/torch.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Callable
|
3 |
+
|
4 |
+
|
5 |
+
def custom_amp_decorator(dec: Callable, cuda_amp_deprecated: bool):
|
6 |
+
def decorator(*args, **kwargs):
|
7 |
+
if cuda_amp_deprecated:
|
8 |
+
kwargs["device_type"] = "cuda"
|
9 |
+
return dec(*args, **kwargs)
|
10 |
+
return decorator
|
11 |
+
|
12 |
+
|
13 |
+
if hasattr(torch.amp, "custom_fwd"): # type: ignore[attr-defined]
|
14 |
+
deprecated = True
|
15 |
+
from torch.amp import custom_fwd, custom_bwd # type: ignore[attr-defined]
|
16 |
+
else:
|
17 |
+
deprecated = False
|
18 |
+
from torch.cuda.amp import custom_fwd, custom_bwd
|
19 |
+
|
20 |
+
custom_fwd = custom_amp_decorator(custom_fwd, deprecated)
|
21 |
+
custom_bwd = custom_amp_decorator(custom_bwd, deprecated)
|