|
|
|
|
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from megablocks import ops |
|
|
|
PADDED_GATHER_TESTS = ( |
|
(4, 2, 2, 1), |
|
(4, 2, 2, 2), |
|
(1024, 1, 4, 1), |
|
(1024, 1, 4, 2), |
|
(1024, 1, 4, 4), |
|
(1024, 1, 64, 1), |
|
(1024, 1, 64, 2), |
|
(1024, 1, 64, 4), |
|
(1024, 1, 128, 1), |
|
(1024, 1, 128, 2), |
|
(1024, 1, 128, 4), |
|
(1024, 1536, 4, 1), |
|
(1024, 1536, 4, 2), |
|
(1024, 1536, 4, 4), |
|
(1024, 1536, 64, 1), |
|
(1024, 1536, 64, 2), |
|
(1024, 1536, 64, 4), |
|
(1024, 1536, 128, 1), |
|
(1024, 1536, 128, 2), |
|
(1024, 1536, 128, 4), |
|
(16384, 768, 4, 1), |
|
(16384, 768, 4, 2), |
|
(16384, 768, 4, 4), |
|
(16384, 768, 64, 1), |
|
(16384, 768, 64, 2), |
|
(16384, 768, 64, 4), |
|
(16384, 768, 128, 1), |
|
(16384, 768, 128, 2), |
|
(16384, 768, 128, 4), |
|
(16384, 1, 4, 1), |
|
(16384, 1, 4, 2), |
|
(16384, 1, 4, 4), |
|
(16384, 1, 64, 1), |
|
(16384, 1, 64, 2), |
|
(16384, 1, 64, 4), |
|
(16384, 1, 128, 1), |
|
(16384, 1, 128, 2), |
|
(16384, 1, 128, 4), |
|
) |
|
|
|
|
|
@pytest.mark.gpu |
|
@pytest.mark.parametrize(('sl', 'hs', 'ne', 'top_k'), PADDED_GATHER_TESTS) |
|
def testPaddedGather(sl: int, hs: int, ne: int, top_k: int): |
|
|
|
x = torch.randn((sl, hs)).cuda().half() |
|
|
|
|
|
top_expert = torch.randint(0, ne, (sl * top_k,)).cuda().int() |
|
bin_ids, indices = ops.sort(top_expert) |
|
tokens_per_expert = ops.histogram(top_expert, ne) |
|
padded_tokens_per_expert = ops.round_up(tokens_per_expert, 128) |
|
padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0) |
|
bins = ops.inclusive_cumsum(tokens_per_expert, 0) |
|
|
|
def padded_gather( |
|
x: torch.Tensor, |
|
indices: torch.Tensor, |
|
bin_ids: torch.Tensor, |
|
bins: torch.Tensor, |
|
padded_bins: torch.Tensor, |
|
top_k: int, |
|
): |
|
x = x.cpu().numpy() |
|
indices = indices.cpu().numpy() |
|
bin_ids = bin_ids.cpu().numpy() |
|
bins = bins.cpu().numpy() |
|
padded_bins = padded_bins.cpu().numpy() |
|
|
|
out = np.zeros((padded_bins[-1], hs)) |
|
in_idx = 0 |
|
for i, end in enumerate(bins): |
|
out_idx = 0 if i == 0 else padded_bins[i - 1] |
|
end = bins[i] |
|
while in_idx < end: |
|
load_idx = indices[in_idx] // top_k |
|
out[out_idx, :] = x[load_idx, :] |
|
in_idx += 1 |
|
out_idx += 1 |
|
return torch.from_numpy(out).cuda().half() |
|
|
|
out = ops.padded_gather(x, indices, bin_ids, bins, padded_bins, top_k) |
|
expected_out = padded_gather(x, indices, bin_ids, bins, padded_bins, top_k) |
|
assert torch.all(torch.eq(out, expected_out)) |
|
|