# Copyright 2024 Databricks | |
# SPDX-License-Identifier: Apache-2.0 | |
import pytest | |
import torch | |
from megablocks import ops | |
CUMSUM_TESTS = ( | |
(1, 32), | |
(2, 32), | |
(2, 1024), | |
(4, 1024), | |
(8, 1024), | |
(16, 1024), | |
(32, 1024), | |
(64, 1024), | |
(128, 1024), | |
(2, 16384), | |
(4, 16384), | |
(8, 16384), | |
(16, 16384), | |
(32, 16384), | |
(64, 16384), | |
(128, 16384), | |
) | |
def test_exclusive_cumsum(n: int, m: int): | |
x = torch.randint(0, 2, (n, m)).long().cuda() | |
out = ops.exclusive_cumsum(x, 1) * x | |
expected_out = (torch.cumsum(x, dim=1) - 1) * x | |
assert torch.all(torch.eq(out, expected_out)) | |
def test_inclusive_cumsum(n: int, m: int): | |
x = torch.randint(0, 2, (n, m)).long().cuda() | |
out = ops.inclusive_cumsum(x, 1) | |
expected_out = torch.cumsum(x, dim=1) | |
assert torch.all(torch.eq(out, expected_out)) | |