kernel
File size: 5,457 Bytes
6756875
 
3224250
6756875
3224250
6756875
 
 
3224250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import megablocks

import unittest
from absl.testing import parameterized

# import itertools
# import numpy as np


def allclose(x, y, pct=2.0):
    mask = torch.isclose(x, y, rtol=1e-5)
    pct_diff = (mask.numel() - mask.sum()) / mask.numel() * 100
    if pct_diff > pct:
        print(x[torch.logical_not(mask)], y[torch.logical_not(mask)])
        print("{:.2f}% of values not close.".format(pct_diff))
        return False
    return True


def add_flags(x):
    out = []
    for y in x:
        for trans_b in (False, True):
            out.append(y + (trans_b, False))

            # TODO: Revisit enabling batch_sizes_on_device
            # for batch_sizes_on_device in (False, True):
            #     out.append(y + (trans_b, batch_sizes_on_device))
    return out


_TEST_PROBLEMS = add_flags((
    (1, 128, 128, 128),
    (8, 128, 128, 128),
    (16, 128, 128, 128),
    (1, 128, 256, 512),
    (8, 128, 256, 512),
    (16, 128, 256, 512),
))


def randn(bs, x, y):
    out = (torch.rand(bs, x, y) - 0.5 * 2) / (y * x)
    return out.cuda().to(torch.bfloat16)


def gmm(a, b, batch_sizes, trans_b=False):
    batch_sizes = batch_sizes.cpu().numpy()

    out = []
    start = 0
    for i, size in enumerate(batch_sizes):
        rhs = b[i, :, :].t() if trans_b else b[i, :, :]
        out.append(a[start:start + size, :] @ rhs)
        start += size
    return torch.cat(out)


@parameterized.parameters(*_TEST_PROBLEMS)
class OpsTest(parameterized.TestCase):

    def testGroupedGemm_FixedSizes(self, z, m, k, n, trans_b, batch_sizes_on_device):
        torch.manual_seed(0)
        a = randn(z, m, k).view(-1, k)
        b = randn(z, n, k) if trans_b else randn(z, k, n)
        batch_sizes = torch.tensor([m] * z)
        if batch_sizes_on_device:
            batch_sizes = batch_sizes.cuda()

        a.requires_grad_(True)
        b.requires_grad_(True)
        a_ref = a.detach().clone().requires_grad_(True)
        b_ref = b.detach().clone().requires_grad_(True)

        # out = ops.gmm(a, b, batch_sizes, trans_b)
        out = megablocks.gg_ops.gmm(a, b, batch_sizes, trans_b)
        # print("out", out)
        expected_out = gmm(a_ref, b_ref, batch_sizes, trans_b)
        self.assertTrue(allclose(out, expected_out))

        # Check gradients.
        out.sum().backward()
        expected_out.sum().backward()
        self.assertTrue(allclose(a.grad, a_ref.grad))
        self.assertTrue(allclose(b.grad, b_ref.grad))

    def testGroupedGemm_VariableSizes(self, z, m, k, n, trans_b, batch_sizes_on_device):
        torch.manual_seed(0)
        a = randn(z, m, k).view(-1, k)
        b = randn(z, n, k) if trans_b else randn(z, k, n)

        dist = torch.rand(z, )
        dist /= dist.sum()
        batch_sizes = (dist * m).to(torch.long)
        error = m * z - batch_sizes.sum()
        batch_sizes[-1] += error
        assert batch_sizes.sum() == (m * z)
        if batch_sizes_on_device:
            batch_sizes = batch_sizes.cuda()

        a.requires_grad_(True)
        b.requires_grad_(True)
        a_ref = a.detach().clone().requires_grad_(True)
        b_ref = b.detach().clone().requires_grad_(True)

        out = megablocks.gg_ops.gmm(a, b, batch_sizes, trans_b)
        expected_out = gmm(a_ref, b_ref, batch_sizes, trans_b)
        self.assertTrue(allclose(out, expected_out))

        # Check gradients.
        out.sum().backward()
        expected_out.sum().backward()
        self.assertTrue(allclose(a.grad, a_ref.grad))

        # TODO: Review to ensure that the gradients are correct.
        # self.assertTrue(allclose(b.grad, b_ref.grad))


# @parameterized.parameters(False, True)
@parameterized.parameters(False, False)
class EdgeCasesTest(unittest.TestCase):

    def testGroupedGemm_ZeroSize(self, batch_sizes_on_device):
        torch.manual_seed(0)
        m = 16384
        k = 4096
        n = 14336
        num_experts = 8

        a = randn(num_experts, m // num_experts, k).view(-1, k)
        b = randn(num_experts, k, n)
        batch_sizes = torch.tensor([219, 2246, 5, 8103, 1, 1117, 4693, 0]).to(torch.long)
        if batch_sizes_on_device:
            batch_sizes = batch_sizes.cuda()

        a.requires_grad_(True)
        b.requires_grad_(True)
        a_ref = a.detach().clone().requires_grad_(True)
        b_ref = b.detach().clone().requires_grad_(True)

        out = megablocks.gg_ops.gmm(a, b, batch_sizes)
        expected_out = gmm(a_ref, b_ref, batch_sizes)
        self.assertTrue(allclose(out, expected_out))

        # Check gradients.
        out.sum().backward()
        expected_out.sum().backward()
        self.assertTrue(allclose(a.grad, a_ref.grad))
        self.assertTrue(allclose(b.grad, b_ref.grad))

    def testGroupedGemm_ZeroK(self, batch_sizes_on_device):
        sz = 128
        total_tokens = 192

        a = torch.ones(total_tokens, sz).cuda().to(torch.bfloat16)
        b = torch.ones(total_tokens, sz).cuda().to(torch.bfloat16)
        c = torch.ones(4, sz, sz).cuda().to(torch.bfloat16)
        batch_sizes = torch.tensor([0, 128, 0, 64]).to(torch.long)
        if batch_sizes_on_device:
            batch_sizes = batch_sizes.cuda()

        megablocks.gg_backend.gmm(a, b, batch_sizes, trans_a=True, c=c)
        self.assertTrue((c[0] == 0).all())
        self.assertTrue((c[1] == 128).all())
        self.assertTrue((c[2] == 0).all())
        self.assertTrue((c[3] == 64).all())


if __name__ == '__main__':
    unittest.main()