kernel
File size: 4,141 Bytes
9c4ca75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2024 Databricks
# SPDX-License-Identifier: Apache-2.0

import numpy as np
import pytest
import torch

from megablocks import ops

PADDED_SCATTER_TESTS = [
    (4, 2, 2, 2),
    (4, 2, 2, 1),
    (4, 2, 2, 1),
    (4, 2, 2, 1),
    (4, 2, 2, 2),
    (4, 2, 2, 2),
    (1024, 1, 4, 1),
    (1024, 1, 4, 2),
    (1024, 1, 4, 4),
    (1024, 1, 4, 1),
    (1024, 1, 4, 2),
    (1024, 1, 4, 4),
    (1024, 1, 4, 1),
    (1024, 1, 4, 2),
    (1024, 1, 4, 4),
    (1024, 1, 64, 1),
    (1024, 1, 64, 2),
    (1024, 1, 64, 4),
    (1024, 1, 128, 1),
    (1024, 1, 128, 2),
    (1024, 1, 128, 4),
    (1024, 1536, 4, 1),
    (1024, 1536, 4, 2),
    (1024, 1536, 4, 4),
    (1024, 1536, 4, 4),
    (1024, 1536, 4, 4),
    (1024, 1536, 64, 1),
    (1024, 1536, 64, 2),
    (1024, 1536, 64, 4),
    (1024, 1536, 128, 1),
    (1024, 1536, 128, 2),
    (1024, 1536, 128, 4),
    (1024, 1536, 128, 1),
    (1024, 1536, 128, 1),
    (16384, 768, 4, 1),
    (16384, 768, 4, 2),
    (16384, 768, 4, 4),
    (16384, 768, 64, 1),
    (16384, 768, 64, 2),
    (16384, 768, 64, 4),
    (16384, 768, 128, 1),
    (16384, 768, 128, 2),
    (16384, 768, 128, 4),
    (16384, 1, 4, 1),
    (16384, 1, 4, 2),
    (16384, 1, 4, 4),
    (16384, 1, 64, 1),
    (16384, 1, 64, 2),
    (16384, 1, 64, 4),
    (16384, 1, 128, 1),
    (16384, 1, 128, 2),
    (16384, 1, 128, 4),
    (16384, 1, 128, 2),
    (16384, 1, 128, 2),
]


def _to_numpy(x: torch.Tensor) -> np.ndarray:
    return x.detach().cpu().numpy()


@pytest.mark.gpu
@pytest.mark.parametrize((
    'sl',
    'hs',
    'ne',
    'top_k',
), PADDED_SCATTER_TESTS)
def testPaddedScatter(sl: int, hs: int, ne: int, top_k: int):
    # Create the data and indices.
    x = torch.randn((sl, hs), requires_grad=True).cuda().half()

    # Randomly assign tokens to experts.
    top_expert = torch.randint(0, ne, (sl * top_k,)).cuda().int()
    bin_ids, indices = ops.sort(top_expert)
    tokens_per_expert = ops.histogram(top_expert, ne)
    padded_tokens_per_expert = ops.round_up(tokens_per_expert, 128)
    padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0)
    bins = ops.inclusive_cumsum(tokens_per_expert, 0)

    # Sample weights for the scatter reduce.
    weights = torch.rand((sl * top_k,), requires_grad=True).cuda().half()

    # Gather the data to prepare for backwards.
    x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins, top_k)

    def padded_scatter(
        x: torch.Tensor,
        indices: torch.Tensor,
        bin_ids: torch.Tensor,
        weights: torch.Tensor,
        bins: torch.Tensor,
        padded_bins: torch.Tensor,
        top_k: int,
    ):
        x = x.detach().cpu().numpy()
        indices: np.ndarray = _to_numpy(indices)
        bin_ids: np.ndarray = _to_numpy(bin_ids)
        weights: np.ndarray = _to_numpy(weights)
        bins: np.ndarray = _to_numpy(bins)
        padded_bins: np.ndarray = _to_numpy(padded_bins)

        out = np.zeros((indices.shape[0] // top_k, hs))
        out_idx = 0
        for i in range(len(bins)):
            in_idx = 0 if i == 0 else padded_bins[i - 1]
            end = bins[i]
            while out_idx < end:
                store_idx = indices[out_idx]
                scale = weights[store_idx]
                store_idx //= top_k

                out[store_idx, :] += scale * x[in_idx, :]
                out_idx += 1
                in_idx += 1
        return torch.from_numpy(out).cuda().half()

    out = ops.padded_scatter(
        x,
        indices,
        bin_ids,
        weights,
        bins,
        padded_bins,
        top_k,
    )
    expected_out = padded_scatter(
        x,
        indices,
        bin_ids,
        weights,
        bins,
        padded_bins,
        top_k,
    )

    out.backward(torch.randn_like(out))  # sanity check backward pass

    # NOTE: We need to check approximate equality because the scatter reduce uses atomics.
    # np.testing.assert_allclose returns `None` if no error and raises an AssertionError if an error exists
    assert np.testing.assert_allclose(
        _to_numpy(out),
        _to_numpy(expected_out),
        rtol=5e-3,
    ) is None