|
|
|
|
|
import fused_dense_lib as fused_dense_cuda |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from flash_attn.utils.torch import custom_fwd, custom_bwd |
|
from flash_attn.ops.activations import sqrelu_bwd, sqrelu_fwd |
|
from flash_attn.ops.triton.linear import triton_dgrad_act, triton_linear_act |
|
|
|
|
|
class FusedDenseSqreluDenseFunc(torch.autograd.Function): |
|
@staticmethod |
|
@custom_fwd |
|
def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0): |
|
"""checkpoint_lvl: |
|
0: no recomputation in the bwd |
|
1: recompute gelu_out in the bwd |
|
2: recompute act_input and gelu_out in the bwd |
|
""" |
|
if torch.is_autocast_enabled(): |
|
dtype = torch.get_autocast_gpu_dtype() |
|
x, weight1, bias1, weight2, bias2 = [ |
|
a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2] |
|
] |
|
is_bf16 = x.dtype == torch.bfloat16 |
|
assert checkpoint_lvl in [0, 1, 2] |
|
x = x.contiguous() |
|
weight1 = weight1.contiguous() |
|
bias1 = bias1.contiguous() |
|
weight2 = weight2.contiguous() |
|
bias2 = bias2.contiguous() |
|
batch_shape, n = x.shape[:-1], x.shape[-1] |
|
batch_dim = batch_shape.numel() |
|
if is_bf16: |
|
act_input = fused_dense_cuda.linear_bias_forward( |
|
x.reshape(batch_dim, n), weight1, bias1 |
|
) |
|
output1 = sqrelu_fwd(act_input) |
|
else: |
|
save_act_input = checkpoint_lvl != 2 |
|
result = triton_linear_act( |
|
x.reshape(batch_dim, n), |
|
weight1, |
|
bias1, |
|
activation="squared_relu", |
|
save_act_input=save_act_input, |
|
) |
|
if save_act_input: |
|
output1, act_input = result |
|
else: |
|
output1 = result |
|
output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2) |
|
ctx.checkpoint_lvl = checkpoint_lvl |
|
if checkpoint_lvl == 0: |
|
ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1) |
|
elif checkpoint_lvl == 1: |
|
ctx.save_for_backward(x, weight1, bias1, weight2, act_input) |
|
elif checkpoint_lvl == 2: |
|
ctx.save_for_backward(x, weight1, bias1, weight2) |
|
return output2.reshape(*batch_shape, output2.shape[-1]) |
|
|
|
@staticmethod |
|
@custom_bwd |
|
def backward(ctx, grad_output): |
|
grad_output = grad_output.contiguous() |
|
checkpoint_lvl = ctx.checkpoint_lvl |
|
x, weight1, bias1, weight2, *rest = ctx.saved_tensors |
|
batch_shape, n = x.shape[:-1], x.shape[-1] |
|
batch_dim = batch_shape.numel() |
|
is_bf16 = x.dtype == torch.bfloat16 |
|
if checkpoint_lvl == 0: |
|
act_input, output1 = rest |
|
elif checkpoint_lvl == 1: |
|
(act_input,) = rest |
|
output1 = sqrelu_fwd(act_input) |
|
elif checkpoint_lvl == 2: |
|
if is_bf16: |
|
act_input = fused_dense_cuda.linear_bias_forward( |
|
x.reshape(batch_dim, n), weight1, bias1 |
|
) |
|
output1 = sqrelu_fwd(act_input) |
|
else: |
|
output1, act_input = triton_linear_act( |
|
x.reshape(batch_dim, n), |
|
weight1, |
|
bias1, |
|
activation="squared_relu", |
|
save_act_input=True, |
|
) |
|
|
|
if is_bf16: |
|
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) |
|
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) |
|
grad_output1 = grad_output @ weight2 |
|
grad_act_input = sqrelu_bwd(grad_output1, act_input) |
|
grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( |
|
x.reshape(batch_dim, n), weight1, grad_act_input |
|
) |
|
else: |
|
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) |
|
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) |
|
grad_act_input = triton_dgrad_act( |
|
grad_output, weight2, activation="squared_relu", act_input=act_input |
|
) |
|
grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( |
|
x.reshape(batch_dim, n), weight1, grad_act_input |
|
) |
|
return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None |
|
|
|
|
|
fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply |
|
|
|
|
|
class FusedDenseSqreluDense(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
bias1=True, |
|
bias2=True, |
|
checkpoint_lvl=0, |
|
device=None, |
|
dtype=None, |
|
): |
|
""" |
|
checkpoint_lvl (increasing lvl means slower but more memory saving): |
|
0: no recomputation in the bwd |
|
1: recompute gelu_out in the bwd |
|
2: recompute gelu_in and gelu_out in the bwd |
|
""" |
|
assert checkpoint_lvl in [0, 1, 2] |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features * 4 |
|
assert bias1 == True, "DenseSqreluDense module without bias is currently not supported" |
|
assert bias2 == True, "DenseSqreluDense module without bias is currently not supported" |
|
self.checkpoint_lvl = checkpoint_lvl |
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs) |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs) |
|
|
|
def forward(self, x): |
|
assert x.is_cuda |
|
return fused_dense_sqrelu_dense_function( |
|
x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl |
|
) |
|
|