kernel
File size: 10,635 Bytes
876ac68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import math

import torch
from einops import rearrange, repeat
from flash_attn.bert_padding import pad_input, unpad_input


def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random", zero_lengths=False):
    assert mode in ["full", "random", "third"]
    if mode == "full":
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
    elif mode == "random":
        lengths = torch.randint(
            max(0 if zero_lengths else 1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
        )
    elif mode == "third":
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)

    if zero_lengths:
        # Generate zero-lengths every 5 batches and the last batch.
        for i in range(batch_size):
            if i % 5 == 0:
                lengths[i] = 0
        lengths[-1] = 0
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
    return padding_mask


def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, 
    kvpacked=False, qkvpacked=False, add_unused_qkv=False,
    query_unused_mask=None, key_unused_mask=None,
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
    if query_unused_mask is not None or key_unused_mask is not None:
        assert not kvpacked
        assert not qkvpacked

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, seqused_q = unpad_input(
            q, query_padding_mask, query_unused_mask,
        )
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
    else:
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
        seqused_q = None
        max_seqlen_q = seqlen_q
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, seqused_k = unpad_input(k, key_padding_mask, key_unused_mask)
        v_unpad, _, _, _, _ = unpad_input(v, key_padding_mask, key_unused_mask)
    else:
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
        seqused_k = None
        max_seqlen_k = seqlen_k

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
        assert nheads == nheads_k
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
        qkv = torch.stack([q, k, v], dim=2)
        if query_padding_mask is not None:
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
        else:
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
        kv = torch.stack([k, v], dim=2)
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
        else:
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
        else:
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            seqused_q,
            seqused_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )


def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    query_padding_mask=None,
    key_padding_mask=None,
    device=None,
    key_leftpad=None,
):
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    if key_leftpad is not None:
        key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
        col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
        col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            col_idx < row_idx + sk - sq - window_size[0],
        )


def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    attn_bias=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
    softcap=0.0,
    upcast=True,
    reorder_ops=False,
    key_leftpad=None,
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
    if causal:
        window_size = (window_size[0], 0)
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
    d = q.shape[-1]
    if not reorder_ops:
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    else:
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
    if softcap > 0:
        scores /= softcap
        scores = scores.tanh()
        scores *= softcap
    if key_padding_mask is not None:
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
            key_leftpad=key_leftpad,
        )
        scores.masked_fill_(local_mask, float("-inf"))
    if attn_bias is not None:
        scores = scores + attn_bias
    attention = torch.softmax(scores, dim=-1).to(v.dtype)
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
    else:
        attention_drop = attention
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
    if query_padding_mask is not None:
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
    if key_padding_mask is not None:
        output.masked_fill_(rearrange(torch.logical_not(torch.any(key_padding_mask, 1)), "b -> b 1 1 1"), 0.0)
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)