nehcgs commited on
Commit
0facf29
·
verified ·
1 Parent(s): ec35b1c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -6
README.md CHANGED
@@ -49,7 +49,6 @@ import json
49
  from typing import Any, Dict, List
50
  from transformers import AutoModelForCausalLM, AutoTokenizer
51
 
52
- # Specify the desired model name here
53
  model_name = "katanemo/Arch-Agent-7B"
54
 
55
  model = AutoModelForCausalLM.from_pretrained(
@@ -57,8 +56,6 @@ model = AutoModelForCausalLM.from_pretrained(
57
  )
58
  tokenizer = AutoTokenizer.from_pretrained(model_name)
59
 
60
-
61
- # Please use the recommended prompt for each model.
62
  TASK_PROMPT = (
63
  "You are a helpful assistant designed to assist with the user query by making one or more function calls if needed."
64
  "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
@@ -94,7 +91,6 @@ tools = [
94
  }
95
  ]
96
 
97
-
98
  # Helper function to create the system prompt for our model
99
  def format_prompt(tools: List[Dict[str, Any]]):
100
  tool_text = "\n".join(
@@ -102,7 +98,6 @@ def format_prompt(tools: List[Dict[str, Any]]):
102
  )
103
  return TASK_PROMPT.format(tool_text=tool_text)
104
 
105
-
106
  system_prompt = format_prompt(tools)
107
 
108
  messages = [
@@ -110,7 +105,6 @@ messages = [
110
  {"role": "user", "content": "What is the weather in Seattle?"},
111
  ]
112
 
113
- #### 2.2.3 Run inference
114
  model_inputs = tokenizer.apply_chat_template(
115
  messages, add_generation_prompt=True, return_tensors="pt", return_dict=True
116
  ).to(model.device)
 
49
  from typing import Any, Dict, List
50
  from transformers import AutoModelForCausalLM, AutoTokenizer
51
 
 
52
  model_name = "katanemo/Arch-Agent-7B"
53
 
54
  model = AutoModelForCausalLM.from_pretrained(
 
56
  )
57
  tokenizer = AutoTokenizer.from_pretrained(model_name)
58
 
 
 
59
  TASK_PROMPT = (
60
  "You are a helpful assistant designed to assist with the user query by making one or more function calls if needed."
61
  "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
 
91
  }
92
  ]
93
 
 
94
  # Helper function to create the system prompt for our model
95
  def format_prompt(tools: List[Dict[str, Any]]):
96
  tool_text = "\n".join(
 
98
  )
99
  return TASK_PROMPT.format(tool_text=tool_text)
100
 
 
101
  system_prompt = format_prompt(tools)
102
 
103
  messages = [
 
105
  {"role": "user", "content": "What is the weather in Seattle?"},
106
  ]
107
 
 
108
  model_inputs = tokenizer.apply_chat_template(
109
  messages, add_generation_prompt=True, return_tensors="pt", return_dict=True
110
  ).to(model.device)