docs-update-readme-0624 (#23)
Browse files- docs: cherry-pick README from pr/17 e3e8a244 (40aa64361d8a8d16ff9335f623d8fb1d33ee5aa6)
- feat: add .gitignore (a188cd19ef4c2612fc8882f18621e9c82ffebd7d)
- docs: update the transformers and API codes (69ac66d5b083672544fb01ebc97227740153f190)
- docs: update the tech report link (3061fd752721844bbfaf7bb7a566d36ce28e6c06)
- docs: fix the code snippets (5a1b238231f4de5b3d9bdb5c8d9e74eae6883d60)
- .gitignore +73 -0
- README.md +303 -58
.gitignore
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
build/
|
8 |
+
develop-eggs/
|
9 |
+
dist/
|
10 |
+
downloads/
|
11 |
+
eggs/
|
12 |
+
.eggs/
|
13 |
+
lib/
|
14 |
+
lib64/
|
15 |
+
parts/
|
16 |
+
sdist/
|
17 |
+
var/
|
18 |
+
wheels/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Virtual Environment
|
24 |
+
venv/
|
25 |
+
env/
|
26 |
+
ENV/
|
27 |
+
.env
|
28 |
+
.venv
|
29 |
+
env.bak/
|
30 |
+
venv.bak/
|
31 |
+
|
32 |
+
# IDE
|
33 |
+
.idea/
|
34 |
+
.vscode/
|
35 |
+
*.swp
|
36 |
+
*.swo
|
37 |
+
.project
|
38 |
+
.pydevproject
|
39 |
+
.settings/
|
40 |
+
|
41 |
+
# Jupyter Notebook
|
42 |
+
.ipynb_checkpoints
|
43 |
+
*.ipynb
|
44 |
+
|
45 |
+
# Distribution / packaging
|
46 |
+
.Python
|
47 |
+
*.manifest
|
48 |
+
*.spec
|
49 |
+
|
50 |
+
# Unit test / coverage reports
|
51 |
+
htmlcov/
|
52 |
+
.tox/
|
53 |
+
.coverage
|
54 |
+
.coverage.*
|
55 |
+
.cache
|
56 |
+
nosetests.xml
|
57 |
+
coverage.xml
|
58 |
+
*.cover
|
59 |
+
.hypothesis/
|
60 |
+
|
61 |
+
# Logs and databases
|
62 |
+
*.log
|
63 |
+
*.sqlite
|
64 |
+
*.db
|
65 |
+
|
66 |
+
# OS generated files
|
67 |
+
.DS_Store
|
68 |
+
.DS_Store?
|
69 |
+
._*
|
70 |
+
.Spotlight-V100
|
71 |
+
.Trashes
|
72 |
+
ehthumbs.db
|
73 |
+
Thumbs.db
|
README.md
CHANGED
@@ -1,92 +1,337 @@
|
|
1 |
-
|
2 |
|
|
|
|
|
|
|
3 |
|
4 |
-
## Examples
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
```python
|
9 |
-
import torch
|
10 |
-
from transformers import AutoModel
|
11 |
-
from PIL import Image
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v4', trust_remote_code=True)
|
17 |
-
model = model.to(device)
|
18 |
|
19 |
-
# Sample data
|
20 |
-
texts = ["Here is some sample code", "This is a matching text"]
|
21 |
-
image_paths = ['/<path_to_image>']
|
22 |
-
images = [Image.open(path) for path in image_paths]
|
23 |
|
24 |
-
|
25 |
-
# Generate embeddings with dimension truncation (256), decrease max_pixels
|
26 |
-
img_embeddings = model.encode_images(images=images, truncate_dim=256, max_pixels=602112, task='text-matching')
|
27 |
-
text_embeddings = model.encode_texts(texts=texts, truncate_dim=256, max_length=512, task='text-matching')
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
code = ["def hello_world():\n print('Hello, World!')"]
|
38 |
-
code_embeddings = model.encode_texts(texts=code, task='code')
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
```
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
```python
|
|
|
|
|
|
|
45 |
import torch
|
46 |
-
from transformers import AutoModel, AutoProcessor
|
47 |
-
from PIL import Image
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
-
|
52 |
-
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v4', trust_remote_code=True)
|
53 |
-
model = model.to(device)
|
54 |
-
processor = AutoProcessor.from_pretrained('jinaai/jina-embeddings-v4', trust_remote_code=True)
|
55 |
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
#
|
67 |
-
model.
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'):
|
73 |
-
# Get embeddings
|
74 |
-
text_embeddings = model.model(**text_batch, task_label='retrieval').single_vec_emb
|
75 |
-
img_embeddings = model.model(**image_batch, task_label='retrieval').single_vec_emb
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
|
|
|
|
|
|
83 |
```python
|
84 |
from sentence_transformers import SentenceTransformer
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
|
|
1 |
+
<br><br>
|
2 |
|
3 |
+
<p align="center">
|
4 |
+
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
|
5 |
+
</p>
|
6 |
|
|
|
7 |
|
8 |
+
<p align="center">
|
9 |
+
<b>The embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
10 |
+
</p>
|
11 |
+
|
12 |
+
<p align="center">
|
13 |
+
<b>Jina Embeddings v4: Multilingual Multimodal Embeddings</b>
|
14 |
+
</p>
|
15 |
+
|
16 |
+
|
17 |
+
## Quick Start
|
18 |
+
|
19 |
+
[Blog](https://alwaysjudgeabookbyitscover.com/) | [Technical Report](https://arxiv.org/abs/2506.18902) | [API](https://jina.ai/embeddings)
|
20 |
+
|
21 |
+
|
22 |
+
## Intended Usage & Model Info
|
23 |
+
`jina-embeddings-v4` is a multilingual, multimodal embedding model designed for unified representation of text and images.
|
24 |
+
The model is specialized for complex document retrieval, including visually rich documents with charts, tables, and illustrations.
|
25 |
+
Embeddings produced by `jina-embeddings-v4` serve as the backbone for neural information retrieval and multimodal GenAI applications.
|
26 |
+
|
27 |
+
|
28 |
+
Built based on [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), `jina-embeddings-v4` has the following features:
|
29 |
+
|
30 |
+
- **Unified embeddings** for text, images, and visual documents, supporting both dense (single-vector) and late-interaction (multi-vector) retrieval.
|
31 |
+
- **Multilingual support** (20+ languages) and compatibility with a wide range of domains, including technical and visually complex documents.
|
32 |
+
- **Task-specific adapters** for retrieval, text matching, and code-related tasks, which can be selected at inference time.
|
33 |
+
- **Flexible embedding size**: dense embeddings are 2048 dimensions by default but can be truncated to as low as 128 with minimal performance loss.
|
34 |
+
|
35 |
+
|
36 |
+
Summary of features:
|
37 |
+
|
38 |
+
| Feature | Jina Embeddings V4 |
|
39 |
+
|------------|------------|
|
40 |
+
| Base Model | Qwen2.5-VL-3B-Instruct |
|
41 |
+
| Supported Tasks | `retrieval`, `text-matching`, `code` |
|
42 |
+
| Model DType | BFloat 16 |
|
43 |
+
| Max Sequence Length | 32768 |
|
44 |
+
| Single-Vector Dimension | 2048 |
|
45 |
+
| Multi-Vector Dimension | 128 |
|
46 |
+
| Matryoshka dimensions | 128, 256, 512, 1024, 2048 |
|
47 |
+
| Pooling Strategy | Mean pooling |
|
48 |
+
| Attention Mechanism | FlashAttention2 |
|
49 |
+
|
50 |
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
## Training, Data, Parameters
|
53 |
|
54 |
+
Please refer to our [technical report of jina-embeddings-v4](https://arxiv.org/abs/2506.18902) for the model and training details.
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
## Usage
|
|
|
|
|
|
|
58 |
|
59 |
+
<details>
|
60 |
+
<summary>Requirements</a></summary>
|
61 |
+
|
62 |
+
The following Python packages are required:
|
63 |
|
64 |
+
- `transformers>=4.52.0`
|
65 |
+
- `torch>=2.6.0`
|
66 |
+
- `peft>=0.15.2`
|
67 |
+
- `torchvision`
|
68 |
+
- `pillow`
|
69 |
+
|
70 |
+
### Optional / Recommended
|
71 |
+
- **flash-attention**: Installing [flash-attention](https://github.com/Dao-AILab/flash-attention) is recommended for improved inference speed and efficiency, but not mandatory.
|
72 |
+
- **sentence-transformers**: If you want to use the model via the `sentence-transformers` interface, install this package as well.
|
73 |
|
74 |
+
</details>
|
|
|
|
|
75 |
|
76 |
+
|
77 |
+
<details>
|
78 |
+
<summary>via <a href="https://jina.ai/embeddings/">Jina AI Embeddings API</a></summary>
|
79 |
+
|
80 |
+
|
81 |
+
```bash
|
82 |
+
curl https://api.jina.ai/v1/embeddings \
|
83 |
+
-H "Content-Type: application/json" \
|
84 |
+
-H "Authorization: Bearer $JINA_AI_API_TOKEN" \
|
85 |
+
-d @- <<EOFEOF
|
86 |
+
{
|
87 |
+
"model": "jina-embeddings-v4",
|
88 |
+
"task": "text-matching",
|
89 |
+
"input": [
|
90 |
+
{
|
91 |
+
"text": "غروب جميل على الشاطئ"
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"text": "海滩上美丽的日落"
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"text": "A beautiful sunset over the beach"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"text": "Un beau coucher de soleil sur la plage"
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"text": "Ein wunderschöner Sonnenuntergang am Strand"
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"text": "Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία"
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"text": "समुद्र तट पर एक खूबसूरत सूर्यास्त"
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"text": "Un bellissimo tramonto sulla spiaggia"
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"text": "浜辺に沈む美しい夕日"
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"text": "해변 위로 아름다운 일몰"
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"image": "https://i.ibb.co/nQNGqL0/beach1.jpg"
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"image": "https://i.ibb.co/r5w8hG8/beach2.jpg"
|
125 |
+
}
|
126 |
+
]
|
127 |
+
}
|
128 |
+
EOFEOF
|
129 |
```
|
130 |
|
131 |
+
</details>
|
132 |
+
|
133 |
+
<details>
|
134 |
+
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>
|
135 |
|
136 |
```python
|
137 |
+
# !pip install transformers>=4.52.0 torch>=2.6.0 peft>=0.15.2 torchvision pillow
|
138 |
+
# !pip install
|
139 |
+
from transformers import AutoModel
|
140 |
import torch
|
|
|
|
|
141 |
|
142 |
+
# Initialize the model
|
143 |
+
model = AutoModel.from_pretrained("jinaai/jina-embeddings-v4", trust_remote_code=True)
|
144 |
|
145 |
+
model.to("cuda")
|
|
|
|
|
|
|
146 |
|
147 |
+
# ========================
|
148 |
+
# 1. Retrieval Task
|
149 |
+
# ========================
|
150 |
+
# Configure truncate_dim, max_length (for texts), max_pixels (for images), vector_type, batch_size in the encode function if needed
|
151 |
|
152 |
+
# Encode query
|
153 |
+
query_embeddings = model.encode_text(
|
154 |
+
texts=["Overview of climate change impacts on coastal cities"],
|
155 |
+
task="retrieval",
|
156 |
+
prompt_name="query",
|
157 |
+
)
|
158 |
|
159 |
+
# Encode passage (text)
|
160 |
+
passage_embeddings = model.encode_text(
|
161 |
+
texts=[
|
162 |
+
"Climate change has led to rising sea levels, increased frequency of extreme weather events..."
|
163 |
+
],
|
164 |
+
task="retrieval",
|
165 |
+
prompt_name="passage",
|
166 |
+
)
|
167 |
|
168 |
+
# Encode image/document
|
169 |
+
image_embeddings = model.encode_image(
|
170 |
+
images=["https://i.ibb.co/nQNGqL0/beach1.jpg"],
|
171 |
+
task="retrieval",
|
172 |
+
)
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# ========================
|
175 |
+
# 2. Text Matching Task
|
176 |
+
# ========================
|
177 |
+
texts = [
|
178 |
+
"غروب جميل على الشاطئ", # Arabic
|
179 |
+
"海滩上美丽的日落", # Chinese
|
180 |
+
"Un beau coucher de soleil sur la plage", # French
|
181 |
+
"Ein wunderschöner Sonnenuntergang am Strand", # German
|
182 |
+
"Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", # Greek
|
183 |
+
"समुद्र तट पर एक खूबसूरत सूर्यास्त", # Hindi
|
184 |
+
"Un bellissimo tramonto sulla spiaggia", # Italian
|
185 |
+
"浜辺に沈む美しい夕日", # Japanese
|
186 |
+
"해변 위로 아름다운 일몰", # Korean
|
187 |
+
]
|
188 |
|
189 |
+
text_embeddings = model.encode_text(texts=texts, task="text-matching")
|
190 |
+
|
191 |
+
# ========================
|
192 |
+
# 3. Code Understanding Task
|
193 |
+
# ========================
|
194 |
+
|
195 |
+
# Encode query
|
196 |
+
query_embedding = model.encode_text(
|
197 |
+
texts=["Find a function that prints a greeting message to the console"],
|
198 |
+
task="code",
|
199 |
+
prompt_name="query",
|
200 |
+
)
|
201 |
+
|
202 |
+
# Encode code
|
203 |
+
code_embeddings = model.encode_text(
|
204 |
+
texts=["def hello_world():\n print('Hello, World!')"],
|
205 |
+
task="code",
|
206 |
+
prompt_name="passage",
|
207 |
+
)
|
208 |
+
|
209 |
+
# ========================
|
210 |
+
# 4. Use multivectors
|
211 |
+
# ========================
|
212 |
|
213 |
+
multivector_embeddings = model.encode_text(
|
214 |
+
texts=texts,
|
215 |
+
task="retrieval",
|
216 |
+
prompt_name="query",
|
217 |
+
return_multivector=True,
|
218 |
+
)
|
219 |
|
220 |
+
images = ["https://i.ibb.co/nQNGqL0/beach1.jpg", "https://i.ibb.co/r5w8hG8/beach2.jpg"]
|
221 |
+
multivector_image_embeddings = model.encode_image(
|
222 |
+
images=images,
|
223 |
+
task="retrieval",
|
224 |
+
return_multivector=True,
|
225 |
+
)
|
226 |
+
```
|
227 |
+
</details>
|
228 |
|
229 |
+
<details>
|
230 |
+
<summary>via <a href="https://sbert.net/">sentence-transformers</a></summary>
|
231 |
+
|
232 |
```python
|
233 |
from sentence_transformers import SentenceTransformer
|
234 |
|
235 |
+
# Initialize the model
|
236 |
+
model = SentenceTransformer("jinaai/jina-embeddings-v4", trust_remote_code=True)
|
237 |
+
# ========================
|
238 |
+
# 1. Retrieval Task
|
239 |
+
# ========================
|
240 |
+
# Encode query
|
241 |
+
query_embeddings = model.encode(
|
242 |
+
sentences=["Overview of climate change impacts on coastal cities"],
|
243 |
+
task="retrieval",
|
244 |
+
prompt_name="query",
|
245 |
+
)
|
246 |
+
|
247 |
+
print(f"query_embeddings.shape = {query_embeddings.shape}")
|
248 |
+
|
249 |
+
# Encode passage (text)
|
250 |
+
passage_embeddings = model.encode(
|
251 |
+
sentences=[
|
252 |
+
"Climate change has led to rising sea levels, increased frequency of extreme weather events..."
|
253 |
+
],
|
254 |
+
task="retrieval",
|
255 |
+
prompt_name="passage",
|
256 |
+
)
|
257 |
+
|
258 |
+
print(f"passage_embeddings.shape = {passage_embeddings.shape}")
|
259 |
+
|
260 |
+
# Encode image/document
|
261 |
+
image_embeddings = model.encode(
|
262 |
+
sentences=["https://i.ibb.co/nQNGqL0/beach1.jpg"],
|
263 |
+
task="retrieval",
|
264 |
+
)
|
265 |
+
|
266 |
+
print(f"image_embeddings.shape = {image_embeddings.shape}")
|
267 |
+
|
268 |
+
# ========================
|
269 |
+
# 2. Text Matching Task
|
270 |
+
# ========================
|
271 |
+
texts = [
|
272 |
+
"غروب جميل على الشاطئ", # Arabic
|
273 |
+
"海滩上美丽的日落", # Chinese
|
274 |
+
"Un beau coucher de soleil sur la plage", # French
|
275 |
+
"Ein wunderschöner Sonnenuntergang am Strand", # German
|
276 |
+
"Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", # Greek
|
277 |
+
"समुद्र तट पर एक खूबसूरत सूर्यास्त", # Hindi
|
278 |
+
"Un bellissimo tramonto sulla spiaggia", # Italian
|
279 |
+
"浜辺に沈む美しい夕日", # Japanese
|
280 |
+
"해변 위로 아름다운 일몰", # Korean
|
281 |
+
]
|
282 |
+
|
283 |
+
text_embeddings = model.encode(sentences=texts, task="text-matching")
|
284 |
+
|
285 |
+
# ========================
|
286 |
+
# 3. Code Understanding Task
|
287 |
+
# ========================
|
288 |
+
|
289 |
+
# Encode query
|
290 |
+
query_embeddings = model.encode(
|
291 |
+
sentences=["Find a function that prints a greeting message to the console"],
|
292 |
+
task="code",
|
293 |
+
prompt_name="query",
|
294 |
)
|
295 |
|
296 |
+
# Encode code
|
297 |
+
code_embeddings = model.encode(
|
298 |
+
sentences=["def hello_world():\n print('Hello, World!')"],
|
299 |
+
task="code",
|
300 |
+
prompt_name="passage",
|
301 |
+
)
|
302 |
+
|
303 |
+
# ========================
|
304 |
+
# 4. Use multivectors
|
305 |
+
# ========================
|
306 |
+
|
307 |
+
multivector_text_embeddings = model.encode(
|
308 |
+
sentences=texts,
|
309 |
+
task="retrieval",
|
310 |
+
prompt_name="query",
|
311 |
+
return_multivector=True,
|
312 |
+
)
|
313 |
+
|
314 |
+
images = ["https://i.ibb.co/nQNGqL0/beach1.jpg", "https://i.ibb.co/r5w8hG8/beach2.jpg"]
|
315 |
+
|
316 |
+
multivector_image_embeddings = model.encode(
|
317 |
+
sentences=images,
|
318 |
+
task="retrieval",
|
319 |
+
return_multivector=True,
|
320 |
+
)
|
321 |
+
```
|
322 |
+
</details>
|
323 |
+
|
324 |
+
|
325 |
+
## License
|
326 |
+
|
327 |
+
This model is licensed to download and run under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en). It is available for commercial use via the [Jina Embeddings API](https://jina.ai/embeddings/), [AWS](https://longdogechallenge.com/), [Azure](https://longdogechallenge.com/), and [GCP](https://longdogechallenge.com/). To download for commercial use, please [contact us](https://jina.ai/contact-sales).
|
328 |
+
|
329 |
+
|
330 |
+
## Contact
|
331 |
+
|
332 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
333 |
+
|
334 |
+
|
335 |
+
## Citation
|
336 |
|
337 |
+
If you find `jina-embeddings-v4` useful in your research, please cite the following paper:
|