|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin |
|
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttentionProcessor, |
|
SanaLinearAttnProcessor2_0, |
|
) |
|
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection, TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNormSingle, RMSNorm |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class GLUMBConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
expand_ratio: float = 4, |
|
norm_type: Optional[str] = None, |
|
residual_connection: bool = True, |
|
) -> None: |
|
super().__init__() |
|
|
|
hidden_channels = int(expand_ratio * in_channels) |
|
self.norm_type = norm_type |
|
self.residual_connection = residual_connection |
|
|
|
self.nonlinearity = nn.SiLU() |
|
self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0) |
|
self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2) |
|
self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False) |
|
|
|
self.norm = None |
|
if norm_type == "rms_norm": |
|
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
if self.residual_connection: |
|
residual = hidden_states |
|
|
|
hidden_states = self.conv_inverted(hidden_states) |
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.conv_depth(hidden_states) |
|
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1) |
|
hidden_states = hidden_states * self.nonlinearity(gate) |
|
|
|
hidden_states = self.conv_point(hidden_states) |
|
|
|
if self.norm_type == "rms_norm": |
|
|
|
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) |
|
|
|
if self.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
class SanaModulatedNorm(nn.Module): |
|
def __init__(self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(dim, elementwise_affine=elementwise_affine, eps=eps) |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, temb: torch.Tensor, scale_shift_table: torch.Tensor |
|
) -> torch.Tensor: |
|
hidden_states = self.norm(hidden_states) |
|
shift, scale = (scale_shift_table[None] + temb[:, None].to(scale_shift_table.device)).chunk(2, dim=1) |
|
hidden_states = hidden_states * (1 + scale) + shift |
|
return hidden_states |
|
|
|
|
|
class SanaCombinedTimestepGuidanceEmbeddings(nn.Module): |
|
def __init__(self, embedding_dim): |
|
super().__init__() |
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
|
|
self.guidance_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
|
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) |
|
|
|
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor = None, hidden_dtype: torch.dtype = None): |
|
timesteps_proj = self.time_proj(timestep) |
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) |
|
|
|
guidance_proj = self.guidance_condition_proj(guidance) |
|
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=hidden_dtype)) |
|
conditioning = timesteps_emb + guidance_emb |
|
|
|
return self.linear(self.silu(conditioning)), conditioning |
|
|
|
|
|
class SanaAttnProcessor2_0: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("SanaAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class SanaTransformerBlock(nn.Module): |
|
r""" |
|
Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int = 2240, |
|
num_attention_heads: int = 70, |
|
attention_head_dim: int = 32, |
|
dropout: float = 0.0, |
|
num_cross_attention_heads: Optional[int] = 20, |
|
cross_attention_head_dim: Optional[int] = 112, |
|
cross_attention_dim: Optional[int] = 2240, |
|
attention_bias: bool = True, |
|
norm_elementwise_affine: bool = False, |
|
norm_eps: float = 1e-6, |
|
attention_out_bias: bool = True, |
|
mlp_ratio: float = 2.5, |
|
qk_norm: Optional[str] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps) |
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
kv_heads=num_attention_heads if qk_norm is not None else None, |
|
qk_norm=qk_norm, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=None, |
|
processor=SanaLinearAttnProcessor2_0(), |
|
) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
qk_norm=qk_norm, |
|
kv_heads=num_cross_attention_heads if qk_norm is not None else None, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_cross_attention_heads, |
|
dim_head=cross_attention_head_dim, |
|
dropout=dropout, |
|
bias=True, |
|
out_bias=attention_out_bias, |
|
processor=SanaAttnProcessor2_0(), |
|
) |
|
|
|
|
|
self.ff = GLUMBConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False) |
|
|
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
height: int = None, |
|
width: int = None, |
|
) -> torch.Tensor: |
|
batch_size = hidden_states.shape[0] |
|
|
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
|
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
norm_hidden_states = norm_hidden_states.to(hidden_states.dtype) |
|
|
|
attn_output = self.attn1(norm_hidden_states) |
|
hidden_states = hidden_states + gate_msa * attn_output |
|
|
|
|
|
if self.attn2 is not None: |
|
attn_output = self.attn2( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
norm_hidden_states = norm_hidden_states.unflatten(1, (height, width)).permute(0, 3, 1, 2) |
|
ff_output = self.ff(norm_hidden_states) |
|
ff_output = ff_output.flatten(2, 3).permute(0, 2, 1) |
|
hidden_states = hidden_states + gate_mlp * ff_output |
|
|
|
return hidden_states |
|
|
|
|
|
class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): |
|
r""" |
|
A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models. |
|
|
|
Args: |
|
in_channels (`int`, defaults to `32`): |
|
The number of channels in the input. |
|
out_channels (`int`, *optional*, defaults to `32`): |
|
The number of channels in the output. |
|
num_attention_heads (`int`, defaults to `70`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, defaults to `32`): |
|
The number of channels in each head. |
|
num_layers (`int`, defaults to `20`): |
|
The number of layers of Transformer blocks to use. |
|
num_cross_attention_heads (`int`, *optional*, defaults to `20`): |
|
The number of heads to use for cross-attention. |
|
cross_attention_head_dim (`int`, *optional*, defaults to `112`): |
|
The number of channels in each head for cross-attention. |
|
cross_attention_dim (`int`, *optional*, defaults to `2240`): |
|
The number of channels in the cross-attention output. |
|
caption_channels (`int`, defaults to `2304`): |
|
The number of channels in the caption embeddings. |
|
mlp_ratio (`float`, defaults to `2.5`): |
|
The expansion ratio to use in the GLUMBConv layer. |
|
dropout (`float`, defaults to `0.0`): |
|
The dropout probability. |
|
attention_bias (`bool`, defaults to `False`): |
|
Whether to use bias in the attention layer. |
|
sample_size (`int`, defaults to `32`): |
|
The base size of the input latent. |
|
patch_size (`int`, defaults to `1`): |
|
The size of the patches to use in the patch embedding layer. |
|
norm_elementwise_affine (`bool`, defaults to `False`): |
|
Whether to use elementwise affinity in the normalization layer. |
|
norm_eps (`float`, defaults to `1e-6`): |
|
The epsilon value for the normalization layer. |
|
qk_norm (`str`, *optional*, defaults to `None`): |
|
The normalization to use for the query and key. |
|
timestep_scale (`float`, defaults to `1.0`): |
|
The scale to use for the timesteps. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["SanaTransformerBlock", "PatchEmbed", "SanaModulatedNorm"] |
|
_skip_layerwise_casting_patterns = ["patch_embed", "norm"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 32, |
|
out_channels: Optional[int] = 32, |
|
num_attention_heads: int = 70, |
|
attention_head_dim: int = 32, |
|
num_layers: int = 20, |
|
num_cross_attention_heads: Optional[int] = 20, |
|
cross_attention_head_dim: Optional[int] = 112, |
|
cross_attention_dim: Optional[int] = 2240, |
|
caption_channels: int = 2304, |
|
mlp_ratio: float = 2.5, |
|
dropout: float = 0.0, |
|
attention_bias: bool = False, |
|
sample_size: int = 32, |
|
patch_size: int = 1, |
|
norm_elementwise_affine: bool = False, |
|
norm_eps: float = 1e-6, |
|
interpolation_scale: Optional[int] = None, |
|
guidance_embeds: bool = False, |
|
guidance_embeds_scale: float = 0.1, |
|
qk_norm: Optional[str] = None, |
|
timestep_scale: float = 1.0, |
|
) -> None: |
|
super().__init__() |
|
|
|
out_channels = out_channels or in_channels |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
height=sample_size, |
|
width=sample_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=inner_dim, |
|
interpolation_scale=interpolation_scale, |
|
pos_embed_type="sincos" if interpolation_scale is not None else None, |
|
) |
|
|
|
|
|
if guidance_embeds: |
|
self.time_embed = SanaCombinedTimestepGuidanceEmbeddings(inner_dim) |
|
else: |
|
self.time_embed = AdaLayerNormSingle(inner_dim) |
|
|
|
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) |
|
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
SanaTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
num_cross_attention_heads=num_cross_attention_heads, |
|
cross_attention_head_dim=cross_attention_head_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_bias=attention_bias, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
mlp_ratio=mlp_ratio, |
|
qk_norm=qk_norm, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) |
|
self.norm_out = SanaModulatedNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def register_block_hooks(self, block_indices=None): |
|
""" |
|
为指定的transformer block注册钩子以获取输出 |
|
|
|
Args: |
|
block_indices (list, optional): 要监视的block索引列表,None表示所有block |
|
|
|
Returns: |
|
dict: block_outputs字典,键为block索引,值为对应的输出 |
|
""" |
|
block_outputs = {} |
|
hooks = [] |
|
|
|
indices = block_indices if block_indices is not None else range(len(self.transformer_blocks)) |
|
|
|
for idx in indices: |
|
|
|
if idx < 0 or idx >= len(self.transformer_blocks): |
|
continue |
|
|
|
def get_hook(i): |
|
def hook(module, input, output): |
|
block_outputs[i] = output |
|
return hook |
|
|
|
h = self.transformer_blocks[idx].register_forward_hook(get_hook(idx)) |
|
hooks.append(h) |
|
|
|
return block_outputs, hooks |
|
|
|
def remove_hooks(self, hooks): |
|
"""移除所有注册的钩子""" |
|
for h in hooks: |
|
h.remove() |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
timestep: torch.Tensor, |
|
guidance: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = True, |
|
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]: |
|
if attention_kwargs is not None: |
|
attention_kwargs = attention_kwargs.copy() |
|
lora_scale = attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
batch_size, num_channels, height, width = hidden_states.shape |
|
p = self.config.patch_size |
|
post_patch_height, post_patch_width = height // p, width // p |
|
|
|
hidden_states = self.patch_embed(hidden_states) |
|
|
|
if guidance is not None: |
|
timestep, embedded_timestep = self.time_embed( |
|
timestep, guidance=guidance, hidden_dtype=hidden_states.dtype |
|
) |
|
else: |
|
timestep, embedded_timestep = self.time_embed( |
|
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype |
|
) |
|
|
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) |
|
|
|
encoder_hidden_states = self.caption_norm(encoder_hidden_states) |
|
|
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
for block in self.transformer_blocks: |
|
hidden_states = self._gradient_checkpointing_func( |
|
block, |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
timestep, |
|
post_patch_height, |
|
post_patch_width, |
|
) |
|
|
|
else: |
|
for block in self.transformer_blocks: |
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
timestep, |
|
post_patch_height, |
|
post_patch_width, |
|
) |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, embedded_timestep, self.scale_shift_table) |
|
|
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
hidden_states = hidden_states.reshape( |
|
batch_size, post_patch_height, post_patch_width, self.config.patch_size, self.config.patch_size, -1 |
|
) |
|
hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4) |
|
output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |