File size: 43,970 Bytes
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8221
 
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8221
 
 
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8221
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
#!/usr/bin/env python
# coding=utf-8
# @Author: jiangpeijie.jpj
# @Date: Mon 4 Dec 2023 05:21:28 PM CST

import logging
import math
from dataclasses import dataclass
from typing import Optional

import torch
import torch.nn.functional as F
import torch.distributed as dist
from numpy import random
from torch import nn
from torch.nn import CrossEntropyLoss
from whisper.model import AudioEncoder

from transformers.activations import ACT2CLS, ClassInstantier

try:
    from atorch.distributed.distributed import parallel_group, parallel_group_size
except Exception:
    parallel_group = None
    parallel_group_size = None


# ## Activations
class SwiGLUActivatition(nn.Module):

    def forward(self, input):
        input = torch.chunk(input, 2, dim=-1)
        return F.silu(input[0]) * input[1]


ACT2CLS["swiglu"] = SwiGLUActivatition
ACT2FN = ClassInstantier(ACT2CLS)


def get_activation(activation_string):
    if activation_string in ACT2FN:
        return ACT2FN[activation_string]
    else:
        raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")


# For backwards compatibility with: from activations import gelu_python
gelu_python = get_activation("gelu_python")
gelu_new = get_activation("gelu_new")
gelu = get_activation("gelu")
gelu_fast = get_activation("gelu_fast")
quick_gelu = get_activation("quick_gelu")
silu = get_activation("silu")
mish = get_activation("mish")
linear_act = get_activation("linear")
swiglu = get_activation("swiglu")


# Rotary Position Embedding Utils
def find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
    return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))


def find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
    """Find dim range bounds based on rotations"""
    low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
    high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
    return max(low, 0), min(high, dim - 1)  # Clamp values just in case


def linear_ramp_mask(min, max, dim):
    if min == max:
        max += 0.001  # Prevent singularity

    linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
    ramp_func = torch.clamp(linear_func, 0, 1)
    return ramp_func


def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    # dim=-1 triggers a bug in earlier torch versions
    return torch.cat((-x2, x1), dim=x1.ndim - 1)


# Comment torchscript func for accurate calculate
# @torch.jit.script
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
    # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
    cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), F.embedding(
        position_id, sin.squeeze(1)
    ).unsqueeze(2)
    q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
    return q, k


class RotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
        super().__init__()
        self.dim = dim
        self.base = base
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        # inv_freq 保留float精度,避免bf16损失
        # inv_freq = inv_freq.to(precision)
        self.learnable = learnable
        if learnable:
            self.inv_freq = torch.nn.Parameter(inv_freq)
            self.max_seq_len_cached = None
        else:
            self.register_buffer('inv_freq', inv_freq)
            self.max_seq_len_cached = None
            self.cos_cached = None
            self.sin_cached = None
        self.precision = precision

    def _load_from_state_dict(
        self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
    ):
        pass

    def forward(self, x, seq_dim=1, seq_len=None):
        if seq_len is None:
            seq_len = x.shape[seq_dim]
        if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
            self.max_seq_len_cached = None if self.learnable else seq_len
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
            t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
            # freqs = torch.einsum('i,j->ij', t, inv_freq.to(x.device))
            freqs = torch.outer(t, inv_freq.to(x.device))
            assert freqs.dtype == torch.float32
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            if self.precision == torch.bfloat16:
                emb = emb.float()

            # [sx, 1 (b * np), hn]
            cos_cached = emb.cos()[:, None, :]
            sin_cached = emb.sin()[:, None, :]
            if self.precision == torch.bfloat16:
                cos_cached = cos_cached.bfloat16()
                sin_cached = sin_cached.bfloat16()
            if self.learnable:
                return cos_cached, sin_cached
            self.cos_cached, self.sin_cached = cos_cached, sin_cached
        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]

    def _apply(self, fn, *args, **kwargs):
        if self.cos_cached is not None:
            self.cos_cached = fn(self.cos_cached)
        if self.sin_cached is not None:
            self.sin_cached = fn(self.sin_cached)
        return super()._apply(fn, *args, **kwargs)


class LinearScalingRotaryEmbedding(RotaryEmbedding):
    """RotaryEmbedding extended with linear scaling."""

    def __init__(
        self, dim, base=10000, precision=torch.half, learnable=False, max_embedding_length=2048, scaling_factor=1.0
    ):
        self.scaling_factor = scaling_factor
        self.max_embedding_length = max_embedding_length
        super().__init__(dim, base, precision, learnable)

    def forward(self, x, seq_dim=1, seq_len=None):
        if seq_len is None:
            seq_len = x.shape[seq_dim]
        if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
            self.max_seq_len_cached = None if self.learnable else seq_len

            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
            t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
            t = t / self.scaling_factor
            # freqs = torch.einsum('i,j->ij', t, inv_freq.to(x.device))
            freqs = torch.outer(t, inv_freq.to(x.device))
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            if self.precision == torch.bfloat16:
                emb = emb.float()

            # [sx, 1 (b * np), hn]
            cos_cached = emb.cos()[:, None, :]
            sin_cached = emb.sin()[:, None, :]
            if self.precision == torch.bfloat16:
                cos_cached = cos_cached.bfloat16()
                sin_cached = sin_cached.bfloat16()
            if self.learnable:
                return cos_cached, sin_cached
            self.cos_cached, self.sin_cached = cos_cached, sin_cached
        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]


class NTKScalingRotaryEmbedding(RotaryEmbedding):
    """RotaryEmbedding extended with Dynamic NTK scaling."""

    def __init__(
        self, dim, base=10000, precision=torch.half, learnable=False, max_embedding_length=2048, scaling_factor=1.0
    ):
        self.scaling_factor = scaling_factor
        self.max_embedding_length = max_embedding_length
        super().__init__(dim, base, precision, learnable)

    def forward(self, x, seq_dim=1, seq_len=None):
        if seq_len is None:
            seq_len = x.shape[seq_dim]
        if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
            self.max_seq_len_cached = None if self.learnable else seq_len

            base = self.base
            if seq_len > self.max_embedding_length:
                base = self.base * (
                    (self.scaling_factor * seq_len / self.max_embedding_length) - (self.scaling_factor - 1)
                ) ** (self.dim / (self.dim - 2))

            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
            t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
            # freqs = torch.einsum('i,j->ij', t, inv_freq.to(x.device))
            freqs = torch.outer(t, inv_freq.to(x.device))
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            if self.precision == torch.bfloat16:
                emb = emb.float()

            # [sx, 1 (b * np), hn]
            cos_cached = emb.cos()[:, None, :]
            sin_cached = emb.sin()[:, None, :]
            if self.precision == torch.bfloat16:
                cos_cached = cos_cached.bfloat16()
                sin_cached = sin_cached.bfloat16()
            if self.learnable:
                return cos_cached, sin_cached
            self.cos_cached, self.sin_cached = cos_cached, sin_cached
        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]


class DynamicYaRNScaledRotaryEmbedding(RotaryEmbedding):
    def __init__(
        self,
        dim,
        base=10000,
        precision=torch.half,
        learnable=False,
        max_embedding_length=2048,
        extrapolation_factor=1,
        attn_factor=1,
        beta_fast=32,
        beta_slow=1,
    ):
        self.max_embedding_length = max_embedding_length
        self.extrapolation_factor = extrapolation_factor
        self.attn_factor = attn_factor
        self.beta_fast = beta_fast
        self.beta_slow = beta_slow

        super().__init__(dim, base, precision, learnable)

    def forward(self, x, seq_dim=1, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
        if seq_len is None:
            seq_len = x.shape[seq_dim]

        if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
            self.max_seq_len_cached = seq_len

            if seq_len > self.max_embedding_length:
                self.yarn(seq_len / self.max_embedding_length, x.device)

            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            # freqs = torch.einsum('i,j->ij', t, inv_freq.to(x.device))
            freqs = torch.outer(t, self.inv_freq.to(x.device))
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            if self.precision == torch.bfloat16:
                emb = emb.float()

            cos_cached = emb.cos()[:, None, :]
            sin_cached = emb.sin()[:, None, :]
            if self.precision == torch.bfloat16:
                cos_cached = cos_cached.bfloat16()
                sin_cached = sin_cached.bfloat16()
            if self.learnable:
                return cos_cached, sin_cached
            self.cos_cached, self.sin_cached = cos_cached, sin_cached

        return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]

    def yarn(self, scale, device):
        pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
        inv_freq_extrapolation = 1.0 / pos_freqs
        inv_freq_interpolation = 1.0 / (scale * pos_freqs)

        low, high = find_correction_range(
            self.beta_fast, self.beta_slow, self.dim, self.base, self.max_embedding_length
        )
        inv_freq_mask = (
            1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
        ) * self.extrapolation_factor  # Get n-d rotational scaling corrected for extrapolation
        inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask

        self.register_buffer("inv_freq", inv_freq)  # Get n-d magnitude scaling corrected for interpolation


# ## LongGLM Utils


@dataclass
class LongGLMMemCache:
    """
    Class with LongLlama's memory cache

    Args:
        key (`torch.FloatTensor` of shape `(batch_size, mem_length, head_nums, embed_size_per_head)`)
        value (`torch.FloatTensor` of shape `(batch_size, mem_length, head_nums, embed_size_per_head)`)
        masks (`torch.FloatTensor` of shape `(batch_size, 1, mem_length, 1)`)
            For masking out parts of memory
    """

    key: torch.FloatTensor
    value: torch.FloatTensor
    masks: torch.FloatTensor


def mem_apply_update(prev_external_mem_cache: LongGLMMemCache, new_mem_content: LongGLMMemCache):

    def update_one(prev, new, dim=1):
        if len(prev.shape) != len(new.shape):
            raise ValueError(f"Memory cache content should be consistent in shape got {prev.shape} {new.shape}")

        return torch.concat([prev, new], dim=dim)

    insert_size = new_mem_content.key.shape[1]

    assert new_mem_content.key.shape[1] == new_mem_content.value.shape[1]
    if new_mem_content.masks.shape[-2] != insert_size:
        raise ValueError("Inconsistent mem_length in new_mem_content")

    return LongGLMMemCache(
        key=update_one(prev_external_mem_cache.key, new_mem_content.key),
        value=update_one(prev_external_mem_cache.value, new_mem_content.value),
        masks=update_one(prev_external_mem_cache.masks, new_mem_content.masks, dim=-2),
    )


def generate_prompt_keypass(n_garbage: int, seed: int = None):
    """Generates a text file and inserts an execute line at a random position."""
    if seed is not None:
        rnd_state = random.get_state()
        random.seed(seed)
    n_garbage_prefix = random.randint(0, n_garbage)
    n_garbage_suffix = n_garbage - n_garbage_prefix

    task_description = "在下文的大量无关紧要的文字中隐藏着一个非常重要的信息,请找到并记住它们,后面将使用到这个信息。"
    garbage = "草是绿色的。天空是蓝色的。太阳是黄色的。我们走。我们离开又回来了。"
    garbage_inf = "".join([garbage] * 5000)
    assert len(garbage_inf) >= n_garbage
    garbage_prefix = garbage_inf[:n_garbage_prefix]
    garbage_suffix = garbage_inf[:n_garbage_suffix]
    pass_key = random.randint(1, 50000)
    information_line = (
        f"以下是本段文本的重要信息: “通行密码是'{pass_key}',这是非常重要的信息,请记住'{pass_key}'是通行密码。”"
    )
    information_line = "\n".join([information_line] * 3)
    final_question = "请问通行密码是多少?"
    lines = [
        task_description,
        garbage_prefix,
        information_line,
        garbage_suffix,
        final_question,
    ]
    if seed is not None:
        random.set_state(rnd_state)
    return "\n".join(lines), str(pass_key)


# ## Loss Fuctions


def _unpack_router_logits(router_outputs):
    """
    Unpack the router tuple for blance loss calculation.
    """
    total_router_logits = []
    total_expert_indexes = []
    for router_output in router_outputs:
        if router_output[0] is not None:
            router_logits, expert_indexes = router_output
            total_router_logits.append(router_logits.unsqueeze(0))
            total_expert_indexes.append(expert_indexes.unsqueeze(0))
    # return torch.cat(total_router_logits, dim=0), torch.cat(total_expert_indexes, dim=0)
    return torch.cat(total_router_logits, dim=0), total_expert_indexes


def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor, labels: torch.Tensor) -> float:
    r"""
    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.

    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
    experts is too unbalanced.

    Args:
        router_probs (`torch.Tensor`):
            Probability assigned to each expert per token. Shape: [num_layers, batch_size, seqeunce_length, num_experts].
        expert_indices (`torch.Tensor`):
            Indices tensor of shape [num_layers, batch_size, seqeunce_length] identifying the selected expert for a given token.

    Returns:
        The auxiliary loss.
    """

    num_layers, _, seq_len, num_experts = router_probs.shape
    num_experts = router_probs.shape[-1]
    new_labels = labels.clone().detach()
    ##
    for batch_tensor in new_labels:
        neg_mask = batch_tensor == -100
        diff_neg_ones = torch.diff(neg_mask.float())
        start_pos = torch.where(diff_neg_ones == 1.0)[0]  # 找到-1序列开始的位置
        if start_pos.nelement() == 0:  # 如果没有找到开始位置,可能需要根据实际情况调整
            pass
        else:
            last_start = start_pos[-1]  # 需要修改的最后一串-1的开始位置
            batch_tensor[:last_start] = 0  # 将这部分-1全部改为0
    new_labels = new_labels.to(torch.int64)

    # cast the expert indices to int64, otherwise one-hot encoding will fail

    if expert_indices.dtype != torch.int64:
        expert_indices = expert_indices.to(torch.int64)

    if len(expert_indices.shape) == 3:
        expert_indices = expert_indices.unsqueeze(3)

    expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)

    # For a given token, determine if it was routed to a given expert.
    expert_mask = torch.max(expert_mask, axis=-2).values

    # cast to float32 otherwise mean will fail
    expert_mask = expert_mask.to(torch.float32)
    labels_mask = (new_labels[None, ..., None].expand_as(expert_mask) != -100).long()

    # sample level balance loss
    tokens_per_group_and_expert = torch.sum(expert_mask * labels_mask, dim=-2) / torch.sum(labels_mask, dim=-2)
    router_prob_per_group_and_expert = torch.sum(router_probs * labels_mask, dim=-2) / torch.sum(labels_mask, dim=-2)
    tmp_per_group_and_expert = torch.mean(expert_mask)
    return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2)
    '''
    # batch level balance loss
    expert_mask = expert_mask.view(num_layers, -1, num_experts).detach()
    labels_mask = labels_mask.view(num_layers, -1, num_experts).detach()
    origin_mask = labels_mask.clone()
    router_probs = router_probs.view(num_layers, -1, num_experts)

    from antllm.utils import mpu

    torch.distributed.all_reduce(expert_mask, group=mpu.get_data_parallel_group())
    torch.distributed.all_reduce(labels_mask, group=mpu.get_data_parallel_group())

    labels_mask = labels_mask.bool().long()

    world_size = torch.distributed.get_world_size()

    tokens_per_group_and_expert = (
        torch.sum(expert_mask * labels_mask, dim=-2) / torch.sum(labels_mask, dim=-2) / world_size
    )
    router_prob_per_group_and_expert = torch.sum(router_probs * origin_mask, dim=-2) / torch.sum(origin_mask, dim=-2)
    layer_loss = tokens_per_group_and_expert * router_prob_per_group_and_expert
    loss = layer_loss.sum(-1).mean() * num_experts
    return loss
    '''


def group_level_device_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float:
    r"""
    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.

    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
    experts is too unbalanced.

    Args:
        router_probs (`torch.Tensor`):
            Probability assigned to each expert per token. Shape: [num_layers, batch_size, seqeunce_length, num_experts].
        expert_indices (`torch.Tensor`):
            Indices tensor of shape [num_layers, batch_size, seqeunce_length] identifying the selected expert for a given token.

    Returns:
        The auxiliary loss.
    """
    assert parallel_group is not None and parallel_group_size is not None

    num_layers, _, seq_len, num_experts = router_probs.shape

    # cast the expert indices to int64, otherwise one-hot encoding will fail
    if expert_indices.dtype != torch.int64:
        expert_indices = expert_indices.to(torch.int64)

    if len(expert_indices.shape) == 3:
        expert_indices = expert_indices.unsqueeze(3)

    expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)

    # For a given token, determine if it was routed to a given expert.
    expert_mask = torch.max(expert_mask, axis=-2).values

    # cast to float32 otherwise mean will fail
    expert_mask = expert_mask.to(torch.float32)
    torch.distributed.all_reduce(expert_mask, group=parallel_group("expert"))
    expert_parallel_size = parallel_group_size("expert")
    num_experts_per_device = num_experts / expert_parallel_size

    # sample level balance loss
    expert_mask = torch.sum(
        torch.cat(torch.chunk(expert_mask.unsqueeze(-2), expert_parallel_size, dim=-1), dim=-2), dim=-1
    )
    tokens_per_group_and_device = torch.mean(expert_mask, axis=-2) / expert_parallel_size

    router_probs = torch.sum(
        torch.cat(torch.chunk(router_probs.unsqueeze(-2), expert_parallel_size, dim=-1), dim=-2), dim=-1
    )
    router_prob_per_group_and_device = torch.mean(router_probs, axis=-2)

    device_loss = tokens_per_group_and_device * router_prob_per_group_and_device * expert_parallel_size
    loss = device_loss.sum(-1).mean()

    return loss


def router_z_loss_func(router_logits: torch.Tensor, labels: torch.Tensor) -> float:
    r"""
    Compute the router z-loss implemented in PyTorch.

    The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906).
    It encourages router logits to remain small in an effort to improve stability.

    Args:
        router_logits (`float`):
            Input logits of shape [num_layers, batch_size, sequence_length, num_experts]

    Returns:
        Scalar router z-loss.
    """
    num_layers, num_groups, tokens_per_group, _ = router_logits.shape
    labels_mask = (labels[None, ..., None].expand_as(router_logits) != -100).long()

    ori_dtype = router_logits.dtype
    if ori_dtype == torch.bfloat16:
        loss_func_inputs = (router_logits * labels_mask).to(torch.float32)
    else:
        loss_func_inputs = router_logits * labels_mask
    log_z = torch.logsumexp(loss_func_inputs, dim=-1).to(ori_dtype)
    z_loss = log_z**2

    # log_z = torch.logsumexp(router_logits * labels_mask, dim=-1)
    # z_loss = log_z**2

    return torch.sum(z_loss) / (num_layers * num_groups * tokens_per_group)


def auxiliary_loss(outputs, labels):
    router_tuple = outputs.router_tuple
    balance_loss, z_loss, last_logits_l2_loss = 0.0, 0.0, 0.0

    loss = 0
    if router_tuple is not None:
        router_logits, layer_router_index = _unpack_router_logits(router_tuple)
        top1_expert_index = torch.cat(layer_router_index, dim=0)
        outputs["layer_expert_index"] = top1_expert_index
        z_loss = router_z_loss_func(router_logits, labels)
        router_probs = torch.nn.Softmax(dim=-1)(router_logits)
        balance_loss = load_balancing_loss_func(router_probs, top1_expert_index, labels)

        num_layers = router_probs.shape[0]
        num_experts = router_probs.shape[-1]
        router_probs_log = router_probs.detach().view(num_layers, -1, num_experts)
        router_probs_mean = router_probs_log.mean(1)
        router_probs_sort_mean = router_probs_log.sort(-1, descending=True)[0].mean(1)
        router_probs_log = torch.stack([router_probs_mean, router_probs_sort_mean], dim=1)
        dist.all_reduce(router_probs_log, dist.ReduceOp.SUM)
        router_probs_log = router_probs_log / torch.distributed.get_world_size()
        if dist.get_rank() == 0:
            router_probs_log = router_probs_log.float()
            router_probs_log /= router_probs_log.sum(-1, keepdim=True)
            outputs["layer_expert_probs"] = router_probs_log.float().cpu()

        group_balance_loss = 0
        if float(outputs["router_group_balance_loss_alpha"]) > 0:
            group_balance_loss = group_level_device_balancing_loss_func(router_probs, top1_expert_index)
        loss = (
            float(outputs["router_z_loss_alpha"]) * z_loss
            + float(outputs["router_balance_loss_alpha"]) * balance_loss
            + float(outputs["router_group_balance_loss_alpha"]) * group_balance_loss
        )

    last_logits_l2_loss = 0.0
    if float(outputs["last_logits_l2_alpha"]) >= 0:
        logits = outputs.logits.view(-1, outputs.logits.size(-1))
        labels_mask = (labels.view(-1) != -100).long()

        last_logits_l2_loss = torch.sum(torch.linalg.norm(logits.float(), 2.0, dim=-1) * labels_mask) / torch.sum(
            labels_mask
        )
        loss += float(outputs["last_logits_l2_alpha"]) * last_logits_l2_loss
        last_logits_l2_loss = last_logits_l2_loss.item()

    return loss, balance_loss, z_loss, last_logits_l2_loss


def expert_balanced_auxiliary_cross_entropy(outputs, labels, *args, **kwargs):
    """FOR PRETRAIN ONLY"""
    # Output losses without reduction for compute dataset loss
    if kwargs.get("output_losses", False):
        lm_loss, losses = cross_entropy_loss(outputs.logits, labels, *args, **kwargs)
    else:
        lm_loss = cross_entropy_loss(outputs.logits, labels, *args, **kwargs)
    aux_loss, balance_loss, z_loss, last_logits_l2_loss = auxiliary_loss(outputs, labels)
    loss = lm_loss + aux_loss
    if kwargs.get("output_losses", False):
        return loss, lm_loss, balance_loss, z_loss, last_logits_l2_loss, losses
    return loss, lm_loss, balance_loss, z_loss, last_logits_l2_loss


def expert_balanced_auxiliary_cross_entropy_for_sft(outputs, labels, *args, **kwargs):
    """FOR SFT ONLY"""
    lm_loss = sample_level_cross_entropy(outputs, labels, **kwargs)
    aux_loss, balance_loss, z_loss, last_logits_l2_loss = auxiliary_loss(outputs, labels)
    loss = lm_loss + aux_loss
    return loss


def expert_balanced_auxiliary_global_level_cross_entropy(outputs, labels, *args, **kwargs):
    """FOR SFT ONLY"""
    lm_loss = global_token_level_cross_entropy(outputs, labels, **kwargs)
    aux_loss, balance_loss, z_loss, last_logits_l2_loss = auxiliary_loss(outputs, labels)
    loss = lm_loss + aux_loss

    return [
        loss,
        {
            'aux_loss': aux_loss,
            'balance_loss': balance_loss,
            'z_loss': z_loss,
            'last_logits_l2_loss': last_logits_l2_loss,
        },
    ]


def cross_entropy_loss(logits, labels, loss_mask, *args, **kwargs):
    if kwargs["use_atorch_cross_entropy"]:
        from atorch.modules.transformer import losses as atorch_loss

        losses = atorch_loss.CrossEntropyLoss(reduction="none")(logits.view(-1, logits.size(-1)), labels.view(-1))
    else:
        losses = torch.nn.CrossEntropyLoss(reduction="none")(logits.view(-1, logits.size(-1)), labels.view(-1))

    loss = torch.sum(losses * loss_mask.view(-1))
    if loss_mask.sum().item() > 0:
        loss = loss / loss_mask.sum()
    if kwargs.get("output_losses", False):
        return loss, losses
    return loss


def local_token_level_cross_entropy(outputs, labels, **kwargs):
    # return outputs.loss / torch.distributed.get_world_size()
    # 在每个batch内部做token-level的平均,然后在所有batch间做平均
    # return outputs.loss
    loss_fct = CrossEntropyLoss(ignore_index=-100)
    loss = loss_fct(outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1))

    return loss


def mini_batch_token_level_cross_entropy(outputs, labels, mini_batch=1, **kwargs):
    # 这个loss会先把batch分成小的mini_batch,在mini_batch内做个token-level的平均,然后做所有卡之间的平均
    loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
    if labels.shape[0] % mini_batch != 0:
        # 如果batch % mini_batch != 0, 则不切分计算. 有的数据量一个epoch结束的时候可能会出现这个情况
        loss_fct = CrossEntropyLoss(ignore_index=-100)
        loss = loss_fct(outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1))
    else:
        loss = loss_fct(
            outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1)
        ).reshape(labels.shape[0] // mini_batch, -1)

        labels = labels.reshape(labels.shape[0] // mini_batch, -1)
        loss = loss.sum(-1) / (labels != -100).sum(-1)
        loss = loss.mean()
    return loss


def sample_level_cross_entropy(outputs, labels, **kwargs):
    # 先对所有样本字token-level的平均,然后计算所有sample的平均值
    loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
    loss = loss_fct(
        outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1)
    ).reshape(labels.shape[0], -1)
    loss = loss.sum(-1) / (labels != -100).sum(-1)
    loss = loss.mean()
    return loss


def global_token_level_cross_entropy(outputs, labels, **kwargs):
    # 对所有样本一起做token-level的平均
    loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
    loss = loss_fct(
        outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1)
    ).reshape(labels.shape[0], -1)
    num_tokens = (loss != 0).sum()
    loss = loss.sum()

    num_tokens_tensor = torch.zeros([1], device=loss.device, dtype=loss.dtype)
    num_tokens_tensor[0] = num_tokens.item()

    torch.distributed.all_reduce(num_tokens_tensor)

    global_num_tokens = num_tokens_tensor.sum()

    torch.distributed.barrier()
    # global_num_tokens是全局的token数,因为在梯度更新的时候回自动对所有卡求mean
    # 所有这里要乘一个world_size
    loss = loss.sum() / global_num_tokens * torch.distributed.get_world_size()

    return loss


LOSS_MAP = {
    'local_token_level_cross_entropy': local_token_level_cross_entropy,
    'mini_batch_token_level_cross_entropy': mini_batch_token_level_cross_entropy,
    'sample_level_cross_entropy': sample_level_cross_entropy,
    'global_token_level_cross_entropy': global_token_level_cross_entropy,
    "moe_auxiliary": expert_balanced_auxiliary_cross_entropy,
    "moe_auxiliary_sft": expert_balanced_auxiliary_cross_entropy_for_sft,
    "pretrain_default": cross_entropy_loss,
    "moe_auxiliary_global_token_level": expert_balanced_auxiliary_global_level_cross_entropy,
}

class Transpose(nn.Module):
    def __init__(self, dim0: int, dim1: int):
        super().__init__()
        self.dim0 = dim0
        self.dim1 = dim1

    def forward(self, x):
        return x.transpose(self.dim0, self.dim1)
    
def patch_continuous_features(
    input_embeddings: torch.Tensor,
    placeholder_loc_lens: torch.Tensor,
    encoded_feats: torch.Tensor,
    encoded_feat_lens: torch.Tensor,
):
    """
    Patch continuous features into input embeddings, while keeping a valid gradient flow.

    input_embeddings: torch.Tensor, size = [B, C?, T, D]
    placeholder_loc_lens: torch.LongTensor, size = [B, N, 2]
        Each 2-tuple represents (start, length) of a placeholder.
    encoded_feats: torch.Tensor, size = [B, L1 + L2 + ... + LN, ...]
    encoded_feat_lens: torch.LongTensor, size = [B, N]

    Example ('X' for patch placeholder tokens):
    Inputs:
        input_embeddings = [[1, 2, 3, X, X, X, 4, 5, 6, X, X, X, 7, 8]]
        placeholder_loc_lens = [[3, 3], [9, 3]]
        encoded_feats = [[A, A, A, B, B]]
        encoded_feat_lens = [[3, 2]]
    Outputs:
        embeddings = [[1, 2, 3, A, A, A, 4, 5, 6, B, B, X, 7, 8]]
    """
    batch_size = input_embeddings.size(0)
    audio_feats_mask = torch.zeros_like(input_embeddings, dtype=torch.bool)
    audio_feats_buffer = []
    for i in range(batch_size):
        sample_len = 0
        audio_feat_start = 0
        audio_feat_buffer = []
        for j in range(placeholder_loc_lens.shape[1]):
            placeholder_start: int = int(placeholder_loc_lens[i, j, 0].item())
            placeholder_len: int = int(placeholder_loc_lens[i, j, 1].item())
            if placeholder_len <= 0:
                break
            feat_len = int(encoded_feat_lens[i, j].item())
            real_feat_len = feat_len
            if feat_len > placeholder_len:
                # logger.warning(
                #     f"Feature length ({feat_len}) > placeholder length ({placeholder_len}). This is not expected. Please "
                #     "check the implementation of estimate_audio_feature_length(). We truncate the feature to avoid errors."
                # )
                feat_len = placeholder_len
            if placeholder_start > sample_len:
                audio_feat_buffer.append(input_embeddings.new_zeros((placeholder_start - sample_len, input_embeddings.shape[2])))
                sample_len = placeholder_start
            audio_feat_buffer.append(encoded_feats[i, audio_feat_start:audio_feat_start + feat_len])
            if feat_len < placeholder_len:
                audio_feat_buffer.append(encoded_feats.new_zeros(placeholder_len - feat_len))
            audio_feats_mask[i, sample_len:sample_len + feat_len] = 1
            audio_feat_start += real_feat_len
            sample_len += placeholder_len
        if sample_len < input_embeddings.shape[1]:
            audio_feat_buffer.append(
                input_embeddings.new_zeros((input_embeddings.shape[1] - sample_len, input_embeddings.shape[2]))
            )
        audio_feats_buffer.append(torch.cat(audio_feat_buffer))
    audio_feats_buffer = torch.stack(audio_feats_buffer, dim=0)
    embeddings = audio_feats_buffer * audio_feats_mask + input_embeddings * ~audio_feats_mask
    return embeddings

def unwrap_feats(feats: torch.Tensor, feats_lengths: torch.Tensor):
    """
    The input feats are in the "wrapped" format, which means that features from (at most) N audios are concatenated
    as a single sample feats[i]. In this case, each row of feats_lengths contains the lengths of the concatenated
    feature. This function unwraps the features.
    For samples with less than N segments, one should pad feats_lengths with 0. The result will contain valid
    segments only.

    feats: torch.Tensor, size = [B, L1 + L2 + ... + LN, ...]
    feats_lengths: torch.LongTensor, size = [B, N]

    Example ('X' for padding):
    Inputs:
        feats = [[A, A, A, A, X],
                 [B, B, C, C, C]]
        feats_lengths = [[4, 0],
                         [2, 3]]
    Outputs:
        feat_segs = [[A, A, A, A],
                     [B, B, X, X],
                     [C, C, C, X]]
        feat_seg_lengths = [4, 2, 3]
    """
    feat_segs = []
    feat_seg_lengths = []
    for i in range(feats_lengths.shape[0]):
        feat_index = 0
        for j in range(feats_lengths.shape[1]):
            feat_len = feats_lengths[i, j].item()
            if feat_len == 0: break
            feat_segs.append(feats[i, feat_index:feat_index + feat_len])
            feat_seg_lengths.append(feat_len)
            feat_index += feat_len
    feat_segs_batch = torch.nn.utils.rnn.pad_sequence(feat_segs, True).to(feats.device)
    feat_seg_lengths = torch.tensor(feat_seg_lengths, dtype=torch.long, device=feats.device)
    return feat_segs_batch, feat_seg_lengths

def wrap_feats(feat_segs: torch.Tensor, feats_lengths: torch.Tensor, feats_seg_lengths: Optional[torch.Tensor] = None):
    """
    Wrap segmented features back to the wrapped format.
    This function is the inverse operation of unwrap_feats(). See its documentation for details.
    Note that the feats_lengths value does not matter a lot. We only check the location of the first 0 to determine the
    number of feature segments.
    """
    feat_idx = 0
    feats_buffer = []
    feats_locs_buffer = []
    feats_lengths_buffer = []
    for i in range(feats_lengths.shape[0]):
        feat_buffer = []
        feat_locs_buffer = []
        feat_lengths_buffer = []
        feat_total_len = 0
        for j in range(feats_lengths.shape[1]):
            feat_len = feats_lengths[i, j].item()
            if feat_len == 0:
                break
            if feats_seg_lengths is not None:
                feat_len = feats_seg_lengths[feat_idx].item()
            feat_buffer.append(feat_segs[feat_idx, :feat_len])
            feat_locs_buffer.append(feat_total_len)
            feat_lengths_buffer.append(feat_len)
            feat_idx += 1
            feat_total_len += feat_len
        feats_buffer.append(torch.cat(feat_buffer))
        feats_locs_buffer.append(torch.tensor(feat_locs_buffer, dtype=torch.long))
        feats_lengths_buffer.append(torch.tensor(feat_lengths_buffer, dtype=torch.long))
    feats = torch.nn.utils.rnn.pad_sequence(feats_buffer, True).to(feat_segs.device)
    feats_locs = torch.nn.utils.rnn.pad_sequence(feats_locs_buffer, True).to(feats_lengths.device)
    feats_new_lengths = torch.nn.utils.rnn.pad_sequence(feats_lengths_buffer, True).to(feats_lengths.device)
    return feats, feats_locs, feats_new_lengths

def encode_audio_segments(
    encoder,
    proj_layer,
    wav_feats=None,
    wav_feats_lengths=None,
    waveforms=None,
    waveforms_lengths=None,
    use_waveform=False,
    audio_config=None,
    whisper_config=None,
    use_whisper_encoder=False
):
    """
    Apply audio encoder to input audio features in wrapped format.
    See the documentation of unwrap_feats() for details about 'wrapped format'.
    """

    # Forward audio encoder.
    if use_waveform:
        assert waveforms is not None and waveforms_lengths is not None
        # Unwrap the waveforms so each waveform is placed at an independent row.
        waveform_segs_batch, waveform_seg_lengths = unwrap_feats(waveforms, waveforms_lengths)
        audio_feats_seg, audio_feat_seg_lengths = encoder(waveform_segs_batch, waveform_seg_lengths)[:2]
    else:
        assert wav_feats is not None and wav_feats_lengths is not None
        # Unwrap the features so the feature of each waveform is placed at an independent row.
        feat_segs_batch, feat_seg_lengths = unwrap_feats(wav_feats, wav_feats_lengths)
        if use_whisper_encoder:
            assert isinstance(encoder, AudioEncoder)
            assert whisper_config is not None
            # for whisper encoder
            # feat_segs_batch: [B, T, n_mels]
            # feat_seg_lengths: [B]
            audio_feats_seg = encoder(feat_segs_batch)
            audio_feats_seg_proj = proj_layer(audio_feats_seg.transpose(-1, -2)).transpose(-1, -2)
            feat_seg_lengths = feat_seg_lengths.to(feat_segs_batch.device)
            # whisper encoder conv
            audio_feat_seg_lengths = (feat_seg_lengths - 3 + 2 * 1) // 2 + 1
            # project layer conv
            audio_feat_seg_lengths = (audio_feat_seg_lengths - whisper_config.ds_kernel_size + 2 *
                                      (whisper_config.ds_kernel_size//2)) // whisper_config.ds_stride + 1
        else:
            audio_feats_seg, audio_feat_seg_lengths = encoder(feat_segs_batch, feat_seg_lengths)[:2]
            audio_feats_seg_proj = proj_layer(audio_feats_seg.transpose(-1, -2)).transpose(-1, -2)
            # project layer conv
            audio_feat_seg_lengths = (audio_feat_seg_lengths - audio_config.ds_kernel_size + 2 * (
                    audio_config.ds_kernel_size // 2)) // audio_config.ds_stride + 1

    # Wrap the features so the 1st dim represents batch_size.
    input_lengths = waveforms_lengths if use_waveform else wav_feats_lengths
    assert input_lengths is not None
    audio_feats, _, audio_feats_lengths = wrap_feats(audio_feats_seg, input_lengths, audio_feat_seg_lengths)
    audio_feats_proj, _, audio_feats_lengths2 = wrap_feats(audio_feats_seg_proj, input_lengths, audio_feat_seg_lengths)
    assert torch.all(audio_feats_lengths == audio_feats_lengths2), f"{audio_feats_lengths}, {audio_feats_lengths2}"

    return audio_feats_proj, audio_feats, audio_feats_lengths

def patch_continuous_features(
    input_embeddings: torch.Tensor,
    placeholder_loc_lens: torch.Tensor,
    encoded_feats: torch.Tensor,
    encoded_feat_lens: torch.Tensor,
):
    """
    Patch continuous features into input embeddings, while keeping a valid gradient flow.

    input_embeddings: torch.Tensor, size = [B, C?, T, D]
    placeholder_loc_lens: torch.LongTensor, size = [B, N, 2]
        Each 2-tuple represents (start, length) of a placeholder.
    encoded_feats: torch.Tensor, size = [B, L1 + L2 + ... + LN, ...]
    encoded_feat_lens: torch.LongTensor, size = [B, N]

    Example ('X' for patch placeholder tokens):
    Inputs:
        input_embeddings = [[1, 2, 3, X, X, X, 4, 5, 6, X, X, X, 7, 8]]
        placeholder_loc_lens = [[3, 3], [9, 3]]
        encoded_feats = [[A, A, A, B, B]]
        encoded_feat_lens = [[3, 2]]
    Outputs:
        embeddings = [[1, 2, 3, A, A, A, 4, 5, 6, B, B, X, 7, 8]]
    """
    batch_size = input_embeddings.size(0)
    audio_feats_mask = torch.zeros_like(input_embeddings, dtype=torch.bool)
    audio_feats_buffer = []
    for i in range(batch_size):
        sample_len = 0
        audio_feat_start = 0
        audio_feat_buffer = []
        for j in range(placeholder_loc_lens.shape[1]):
            placeholder_start: int = int(placeholder_loc_lens[i, j, 0].item())
            placeholder_len: int = int(placeholder_loc_lens[i, j, 1].item())
            if placeholder_len <= 0:
                break
            feat_len = int(encoded_feat_lens[i, j].item())
            real_feat_len = feat_len
            if feat_len > placeholder_len:
                logging.warning(
                    f"Feature length ({feat_len}) > placeholder length ({placeholder_len}). This is not expected. Please "
                    "check the implementation of estimate_audio_feature_length(). We truncate the feature to avoid errors."
                )
                feat_len = placeholder_len
            if placeholder_start > sample_len:
                audio_feat_buffer.append(input_embeddings.new_zeros((placeholder_start - sample_len, input_embeddings.shape[2])))
                sample_len = placeholder_start
            audio_feat_buffer.append(encoded_feats[i, audio_feat_start:audio_feat_start + feat_len])
            if feat_len < placeholder_len:
                audio_feat_buffer.append(encoded_feats.new_zeros(placeholder_len - feat_len))
            audio_feats_mask[i, sample_len:sample_len + feat_len] = 1
            audio_feat_start += real_feat_len
            sample_len += placeholder_len
        if sample_len < input_embeddings.shape[1]:
            audio_feat_buffer.append(
                input_embeddings.new_zeros((input_embeddings.shape[1] - sample_len, input_embeddings.shape[2]))
            )
        audio_feats_buffer.append(torch.cat(audio_feat_buffer))
    audio_feats_buffer = torch.stack(audio_feats_buffer, dim=0)
    embeddings = audio_feats_buffer * audio_feats_mask + input_embeddings * ~audio_feats_mask
    return embeddings

def build_modality_mask(placeholder_loc_lens: torch.Tensor, shape: torch.Size):
    mask = torch.zeros(shape, dtype=torch.bool)
    for i in range(placeholder_loc_lens.shape[0]):
        for j in range(placeholder_loc_lens.shape[1]):
            start: int = int(placeholder_loc_lens[i, j, 0].item())
            length: int = int(placeholder_loc_lens[i, j, 1].item())
            if length <= 0:
                break
            mask[i, start:start + length] = True
    return mask