File size: 43,970 Bytes
e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 |
#!/usr/bin/env python
# coding=utf-8
# @Author: jiangpeijie.jpj
# @Date: Mon 4 Dec 2023 05:21:28 PM CST
import logging
import math
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
import torch.distributed as dist
from numpy import random
from torch import nn
from torch.nn import CrossEntropyLoss
from whisper.model import AudioEncoder
from transformers.activations import ACT2CLS, ClassInstantier
try:
from atorch.distributed.distributed import parallel_group, parallel_group_size
except Exception:
parallel_group = None
parallel_group_size = None
# ## Activations
class SwiGLUActivatition(nn.Module):
def forward(self, input):
input = torch.chunk(input, 2, dim=-1)
return F.silu(input[0]) * input[1]
ACT2CLS["swiglu"] = SwiGLUActivatition
ACT2FN = ClassInstantier(ACT2CLS)
def get_activation(activation_string):
if activation_string in ACT2FN:
return ACT2FN[activation_string]
else:
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
# For backwards compatibility with: from activations import gelu_python
gelu_python = get_activation("gelu_python")
gelu_new = get_activation("gelu_new")
gelu = get_activation("gelu")
gelu_fast = get_activation("gelu_fast")
quick_gelu = get_activation("quick_gelu")
silu = get_activation("silu")
mish = get_activation("mish")
linear_act = get_activation("linear")
swiglu = get_activation("swiglu")
# Rotary Position Embedding Utils
def find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
def find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
"""Find dim range bounds based on rotations"""
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
return max(low, 0), min(high, dim - 1) # Clamp values just in case
def linear_ramp_mask(min, max, dim):
if min == max:
max += 0.001 # Prevent singularity
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
# dim=-1 triggers a bug in earlier torch versions
return torch.cat((-x2, x1), dim=x1.ndim - 1)
# Comment torchscript func for accurate calculate
# @torch.jit.script
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), F.embedding(
position_id, sin.squeeze(1)
).unsqueeze(2)
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
return q, k
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
super().__init__()
self.dim = dim
self.base = base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
# inv_freq 保留float精度,避免bf16损失
# inv_freq = inv_freq.to(precision)
self.learnable = learnable
if learnable:
self.inv_freq = torch.nn.Parameter(inv_freq)
self.max_seq_len_cached = None
else:
self.register_buffer('inv_freq', inv_freq)
self.max_seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
self.precision = precision
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
pass
def forward(self, x, seq_dim=1, seq_len=None):
if seq_len is None:
seq_len = x.shape[seq_dim]
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
self.max_seq_len_cached = None if self.learnable else seq_len
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
# freqs = torch.einsum('i,j->ij', t, inv_freq.to(x.device))
freqs = torch.outer(t, inv_freq.to(x.device))
assert freqs.dtype == torch.float32
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
if self.precision == torch.bfloat16:
emb = emb.float()
# [sx, 1 (b * np), hn]
cos_cached = emb.cos()[:, None, :]
sin_cached = emb.sin()[:, None, :]
if self.precision == torch.bfloat16:
cos_cached = cos_cached.bfloat16()
sin_cached = sin_cached.bfloat16()
if self.learnable:
return cos_cached, sin_cached
self.cos_cached, self.sin_cached = cos_cached, sin_cached
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
def _apply(self, fn, *args, **kwargs):
if self.cos_cached is not None:
self.cos_cached = fn(self.cos_cached)
if self.sin_cached is not None:
self.sin_cached = fn(self.sin_cached)
return super()._apply(fn, *args, **kwargs)
class LinearScalingRotaryEmbedding(RotaryEmbedding):
"""RotaryEmbedding extended with linear scaling."""
def __init__(
self, dim, base=10000, precision=torch.half, learnable=False, max_embedding_length=2048, scaling_factor=1.0
):
self.scaling_factor = scaling_factor
self.max_embedding_length = max_embedding_length
super().__init__(dim, base, precision, learnable)
def forward(self, x, seq_dim=1, seq_len=None):
if seq_len is None:
seq_len = x.shape[seq_dim]
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
self.max_seq_len_cached = None if self.learnable else seq_len
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
t = t / self.scaling_factor
# freqs = torch.einsum('i,j->ij', t, inv_freq.to(x.device))
freqs = torch.outer(t, inv_freq.to(x.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
if self.precision == torch.bfloat16:
emb = emb.float()
# [sx, 1 (b * np), hn]
cos_cached = emb.cos()[:, None, :]
sin_cached = emb.sin()[:, None, :]
if self.precision == torch.bfloat16:
cos_cached = cos_cached.bfloat16()
sin_cached = sin_cached.bfloat16()
if self.learnable:
return cos_cached, sin_cached
self.cos_cached, self.sin_cached = cos_cached, sin_cached
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
class NTKScalingRotaryEmbedding(RotaryEmbedding):
"""RotaryEmbedding extended with Dynamic NTK scaling."""
def __init__(
self, dim, base=10000, precision=torch.half, learnable=False, max_embedding_length=2048, scaling_factor=1.0
):
self.scaling_factor = scaling_factor
self.max_embedding_length = max_embedding_length
super().__init__(dim, base, precision, learnable)
def forward(self, x, seq_dim=1, seq_len=None):
if seq_len is None:
seq_len = x.shape[seq_dim]
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
self.max_seq_len_cached = None if self.learnable else seq_len
base = self.base
if seq_len > self.max_embedding_length:
base = self.base * (
(self.scaling_factor * seq_len / self.max_embedding_length) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
# freqs = torch.einsum('i,j->ij', t, inv_freq.to(x.device))
freqs = torch.outer(t, inv_freq.to(x.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
if self.precision == torch.bfloat16:
emb = emb.float()
# [sx, 1 (b * np), hn]
cos_cached = emb.cos()[:, None, :]
sin_cached = emb.sin()[:, None, :]
if self.precision == torch.bfloat16:
cos_cached = cos_cached.bfloat16()
sin_cached = sin_cached.bfloat16()
if self.learnable:
return cos_cached, sin_cached
self.cos_cached, self.sin_cached = cos_cached, sin_cached
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
class DynamicYaRNScaledRotaryEmbedding(RotaryEmbedding):
def __init__(
self,
dim,
base=10000,
precision=torch.half,
learnable=False,
max_embedding_length=2048,
extrapolation_factor=1,
attn_factor=1,
beta_fast=32,
beta_slow=1,
):
self.max_embedding_length = max_embedding_length
self.extrapolation_factor = extrapolation_factor
self.attn_factor = attn_factor
self.beta_fast = beta_fast
self.beta_slow = beta_slow
super().__init__(dim, base, precision, learnable)
def forward(self, x, seq_dim=1, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
if seq_len is None:
seq_len = x.shape[seq_dim]
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
self.max_seq_len_cached = seq_len
if seq_len > self.max_embedding_length:
self.yarn(seq_len / self.max_embedding_length, x.device)
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
# freqs = torch.einsum('i,j->ij', t, inv_freq.to(x.device))
freqs = torch.outer(t, self.inv_freq.to(x.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
if self.precision == torch.bfloat16:
emb = emb.float()
cos_cached = emb.cos()[:, None, :]
sin_cached = emb.sin()[:, None, :]
if self.precision == torch.bfloat16:
cos_cached = cos_cached.bfloat16()
sin_cached = sin_cached.bfloat16()
if self.learnable:
return cos_cached, sin_cached
self.cos_cached, self.sin_cached = cos_cached, sin_cached
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
def yarn(self, scale, device):
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
inv_freq_extrapolation = 1.0 / pos_freqs
inv_freq_interpolation = 1.0 / (scale * pos_freqs)
low, high = find_correction_range(
self.beta_fast, self.beta_slow, self.dim, self.base, self.max_embedding_length
)
inv_freq_mask = (
1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
self.register_buffer("inv_freq", inv_freq) # Get n-d magnitude scaling corrected for interpolation
# ## LongGLM Utils
@dataclass
class LongGLMMemCache:
"""
Class with LongLlama's memory cache
Args:
key (`torch.FloatTensor` of shape `(batch_size, mem_length, head_nums, embed_size_per_head)`)
value (`torch.FloatTensor` of shape `(batch_size, mem_length, head_nums, embed_size_per_head)`)
masks (`torch.FloatTensor` of shape `(batch_size, 1, mem_length, 1)`)
For masking out parts of memory
"""
key: torch.FloatTensor
value: torch.FloatTensor
masks: torch.FloatTensor
def mem_apply_update(prev_external_mem_cache: LongGLMMemCache, new_mem_content: LongGLMMemCache):
def update_one(prev, new, dim=1):
if len(prev.shape) != len(new.shape):
raise ValueError(f"Memory cache content should be consistent in shape got {prev.shape} {new.shape}")
return torch.concat([prev, new], dim=dim)
insert_size = new_mem_content.key.shape[1]
assert new_mem_content.key.shape[1] == new_mem_content.value.shape[1]
if new_mem_content.masks.shape[-2] != insert_size:
raise ValueError("Inconsistent mem_length in new_mem_content")
return LongGLMMemCache(
key=update_one(prev_external_mem_cache.key, new_mem_content.key),
value=update_one(prev_external_mem_cache.value, new_mem_content.value),
masks=update_one(prev_external_mem_cache.masks, new_mem_content.masks, dim=-2),
)
def generate_prompt_keypass(n_garbage: int, seed: int = None):
"""Generates a text file and inserts an execute line at a random position."""
if seed is not None:
rnd_state = random.get_state()
random.seed(seed)
n_garbage_prefix = random.randint(0, n_garbage)
n_garbage_suffix = n_garbage - n_garbage_prefix
task_description = "在下文的大量无关紧要的文字中隐藏着一个非常重要的信息,请找到并记住它们,后面将使用到这个信息。"
garbage = "草是绿色的。天空是蓝色的。太阳是黄色的。我们走。我们离开又回来了。"
garbage_inf = "".join([garbage] * 5000)
assert len(garbage_inf) >= n_garbage
garbage_prefix = garbage_inf[:n_garbage_prefix]
garbage_suffix = garbage_inf[:n_garbage_suffix]
pass_key = random.randint(1, 50000)
information_line = (
f"以下是本段文本的重要信息: “通行密码是'{pass_key}',这是非常重要的信息,请记住'{pass_key}'是通行密码。”"
)
information_line = "\n".join([information_line] * 3)
final_question = "请问通行密码是多少?"
lines = [
task_description,
garbage_prefix,
information_line,
garbage_suffix,
final_question,
]
if seed is not None:
random.set_state(rnd_state)
return "\n".join(lines), str(pass_key)
# ## Loss Fuctions
def _unpack_router_logits(router_outputs):
"""
Unpack the router tuple for blance loss calculation.
"""
total_router_logits = []
total_expert_indexes = []
for router_output in router_outputs:
if router_output[0] is not None:
router_logits, expert_indexes = router_output
total_router_logits.append(router_logits.unsqueeze(0))
total_expert_indexes.append(expert_indexes.unsqueeze(0))
# return torch.cat(total_router_logits, dim=0), torch.cat(total_expert_indexes, dim=0)
return torch.cat(total_router_logits, dim=0), total_expert_indexes
def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor, labels: torch.Tensor) -> float:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
router_probs (`torch.Tensor`):
Probability assigned to each expert per token. Shape: [num_layers, batch_size, seqeunce_length, num_experts].
expert_indices (`torch.Tensor`):
Indices tensor of shape [num_layers, batch_size, seqeunce_length] identifying the selected expert for a given token.
Returns:
The auxiliary loss.
"""
num_layers, _, seq_len, num_experts = router_probs.shape
num_experts = router_probs.shape[-1]
new_labels = labels.clone().detach()
##
for batch_tensor in new_labels:
neg_mask = batch_tensor == -100
diff_neg_ones = torch.diff(neg_mask.float())
start_pos = torch.where(diff_neg_ones == 1.0)[0] # 找到-1序列开始的位置
if start_pos.nelement() == 0: # 如果没有找到开始位置,可能需要根据实际情况调整
pass
else:
last_start = start_pos[-1] # 需要修改的最后一串-1的开始位置
batch_tensor[:last_start] = 0 # 将这部分-1全部改为0
new_labels = new_labels.to(torch.int64)
# cast the expert indices to int64, otherwise one-hot encoding will fail
if expert_indices.dtype != torch.int64:
expert_indices = expert_indices.to(torch.int64)
if len(expert_indices.shape) == 3:
expert_indices = expert_indices.unsqueeze(3)
expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)
# For a given token, determine if it was routed to a given expert.
expert_mask = torch.max(expert_mask, axis=-2).values
# cast to float32 otherwise mean will fail
expert_mask = expert_mask.to(torch.float32)
labels_mask = (new_labels[None, ..., None].expand_as(expert_mask) != -100).long()
# sample level balance loss
tokens_per_group_and_expert = torch.sum(expert_mask * labels_mask, dim=-2) / torch.sum(labels_mask, dim=-2)
router_prob_per_group_and_expert = torch.sum(router_probs * labels_mask, dim=-2) / torch.sum(labels_mask, dim=-2)
tmp_per_group_and_expert = torch.mean(expert_mask)
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2)
'''
# batch level balance loss
expert_mask = expert_mask.view(num_layers, -1, num_experts).detach()
labels_mask = labels_mask.view(num_layers, -1, num_experts).detach()
origin_mask = labels_mask.clone()
router_probs = router_probs.view(num_layers, -1, num_experts)
from antllm.utils import mpu
torch.distributed.all_reduce(expert_mask, group=mpu.get_data_parallel_group())
torch.distributed.all_reduce(labels_mask, group=mpu.get_data_parallel_group())
labels_mask = labels_mask.bool().long()
world_size = torch.distributed.get_world_size()
tokens_per_group_and_expert = (
torch.sum(expert_mask * labels_mask, dim=-2) / torch.sum(labels_mask, dim=-2) / world_size
)
router_prob_per_group_and_expert = torch.sum(router_probs * origin_mask, dim=-2) / torch.sum(origin_mask, dim=-2)
layer_loss = tokens_per_group_and_expert * router_prob_per_group_and_expert
loss = layer_loss.sum(-1).mean() * num_experts
return loss
'''
def group_level_device_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
router_probs (`torch.Tensor`):
Probability assigned to each expert per token. Shape: [num_layers, batch_size, seqeunce_length, num_experts].
expert_indices (`torch.Tensor`):
Indices tensor of shape [num_layers, batch_size, seqeunce_length] identifying the selected expert for a given token.
Returns:
The auxiliary loss.
"""
assert parallel_group is not None and parallel_group_size is not None
num_layers, _, seq_len, num_experts = router_probs.shape
# cast the expert indices to int64, otherwise one-hot encoding will fail
if expert_indices.dtype != torch.int64:
expert_indices = expert_indices.to(torch.int64)
if len(expert_indices.shape) == 3:
expert_indices = expert_indices.unsqueeze(3)
expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)
# For a given token, determine if it was routed to a given expert.
expert_mask = torch.max(expert_mask, axis=-2).values
# cast to float32 otherwise mean will fail
expert_mask = expert_mask.to(torch.float32)
torch.distributed.all_reduce(expert_mask, group=parallel_group("expert"))
expert_parallel_size = parallel_group_size("expert")
num_experts_per_device = num_experts / expert_parallel_size
# sample level balance loss
expert_mask = torch.sum(
torch.cat(torch.chunk(expert_mask.unsqueeze(-2), expert_parallel_size, dim=-1), dim=-2), dim=-1
)
tokens_per_group_and_device = torch.mean(expert_mask, axis=-2) / expert_parallel_size
router_probs = torch.sum(
torch.cat(torch.chunk(router_probs.unsqueeze(-2), expert_parallel_size, dim=-1), dim=-2), dim=-1
)
router_prob_per_group_and_device = torch.mean(router_probs, axis=-2)
device_loss = tokens_per_group_and_device * router_prob_per_group_and_device * expert_parallel_size
loss = device_loss.sum(-1).mean()
return loss
def router_z_loss_func(router_logits: torch.Tensor, labels: torch.Tensor) -> float:
r"""
Compute the router z-loss implemented in PyTorch.
The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906).
It encourages router logits to remain small in an effort to improve stability.
Args:
router_logits (`float`):
Input logits of shape [num_layers, batch_size, sequence_length, num_experts]
Returns:
Scalar router z-loss.
"""
num_layers, num_groups, tokens_per_group, _ = router_logits.shape
labels_mask = (labels[None, ..., None].expand_as(router_logits) != -100).long()
ori_dtype = router_logits.dtype
if ori_dtype == torch.bfloat16:
loss_func_inputs = (router_logits * labels_mask).to(torch.float32)
else:
loss_func_inputs = router_logits * labels_mask
log_z = torch.logsumexp(loss_func_inputs, dim=-1).to(ori_dtype)
z_loss = log_z**2
# log_z = torch.logsumexp(router_logits * labels_mask, dim=-1)
# z_loss = log_z**2
return torch.sum(z_loss) / (num_layers * num_groups * tokens_per_group)
def auxiliary_loss(outputs, labels):
router_tuple = outputs.router_tuple
balance_loss, z_loss, last_logits_l2_loss = 0.0, 0.0, 0.0
loss = 0
if router_tuple is not None:
router_logits, layer_router_index = _unpack_router_logits(router_tuple)
top1_expert_index = torch.cat(layer_router_index, dim=0)
outputs["layer_expert_index"] = top1_expert_index
z_loss = router_z_loss_func(router_logits, labels)
router_probs = torch.nn.Softmax(dim=-1)(router_logits)
balance_loss = load_balancing_loss_func(router_probs, top1_expert_index, labels)
num_layers = router_probs.shape[0]
num_experts = router_probs.shape[-1]
router_probs_log = router_probs.detach().view(num_layers, -1, num_experts)
router_probs_mean = router_probs_log.mean(1)
router_probs_sort_mean = router_probs_log.sort(-1, descending=True)[0].mean(1)
router_probs_log = torch.stack([router_probs_mean, router_probs_sort_mean], dim=1)
dist.all_reduce(router_probs_log, dist.ReduceOp.SUM)
router_probs_log = router_probs_log / torch.distributed.get_world_size()
if dist.get_rank() == 0:
router_probs_log = router_probs_log.float()
router_probs_log /= router_probs_log.sum(-1, keepdim=True)
outputs["layer_expert_probs"] = router_probs_log.float().cpu()
group_balance_loss = 0
if float(outputs["router_group_balance_loss_alpha"]) > 0:
group_balance_loss = group_level_device_balancing_loss_func(router_probs, top1_expert_index)
loss = (
float(outputs["router_z_loss_alpha"]) * z_loss
+ float(outputs["router_balance_loss_alpha"]) * balance_loss
+ float(outputs["router_group_balance_loss_alpha"]) * group_balance_loss
)
last_logits_l2_loss = 0.0
if float(outputs["last_logits_l2_alpha"]) >= 0:
logits = outputs.logits.view(-1, outputs.logits.size(-1))
labels_mask = (labels.view(-1) != -100).long()
last_logits_l2_loss = torch.sum(torch.linalg.norm(logits.float(), 2.0, dim=-1) * labels_mask) / torch.sum(
labels_mask
)
loss += float(outputs["last_logits_l2_alpha"]) * last_logits_l2_loss
last_logits_l2_loss = last_logits_l2_loss.item()
return loss, balance_loss, z_loss, last_logits_l2_loss
def expert_balanced_auxiliary_cross_entropy(outputs, labels, *args, **kwargs):
"""FOR PRETRAIN ONLY"""
# Output losses without reduction for compute dataset loss
if kwargs.get("output_losses", False):
lm_loss, losses = cross_entropy_loss(outputs.logits, labels, *args, **kwargs)
else:
lm_loss = cross_entropy_loss(outputs.logits, labels, *args, **kwargs)
aux_loss, balance_loss, z_loss, last_logits_l2_loss = auxiliary_loss(outputs, labels)
loss = lm_loss + aux_loss
if kwargs.get("output_losses", False):
return loss, lm_loss, balance_loss, z_loss, last_logits_l2_loss, losses
return loss, lm_loss, balance_loss, z_loss, last_logits_l2_loss
def expert_balanced_auxiliary_cross_entropy_for_sft(outputs, labels, *args, **kwargs):
"""FOR SFT ONLY"""
lm_loss = sample_level_cross_entropy(outputs, labels, **kwargs)
aux_loss, balance_loss, z_loss, last_logits_l2_loss = auxiliary_loss(outputs, labels)
loss = lm_loss + aux_loss
return loss
def expert_balanced_auxiliary_global_level_cross_entropy(outputs, labels, *args, **kwargs):
"""FOR SFT ONLY"""
lm_loss = global_token_level_cross_entropy(outputs, labels, **kwargs)
aux_loss, balance_loss, z_loss, last_logits_l2_loss = auxiliary_loss(outputs, labels)
loss = lm_loss + aux_loss
return [
loss,
{
'aux_loss': aux_loss,
'balance_loss': balance_loss,
'z_loss': z_loss,
'last_logits_l2_loss': last_logits_l2_loss,
},
]
def cross_entropy_loss(logits, labels, loss_mask, *args, **kwargs):
if kwargs["use_atorch_cross_entropy"]:
from atorch.modules.transformer import losses as atorch_loss
losses = atorch_loss.CrossEntropyLoss(reduction="none")(logits.view(-1, logits.size(-1)), labels.view(-1))
else:
losses = torch.nn.CrossEntropyLoss(reduction="none")(logits.view(-1, logits.size(-1)), labels.view(-1))
loss = torch.sum(losses * loss_mask.view(-1))
if loss_mask.sum().item() > 0:
loss = loss / loss_mask.sum()
if kwargs.get("output_losses", False):
return loss, losses
return loss
def local_token_level_cross_entropy(outputs, labels, **kwargs):
# return outputs.loss / torch.distributed.get_world_size()
# 在每个batch内部做token-level的平均,然后在所有batch间做平均
# return outputs.loss
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1))
return loss
def mini_batch_token_level_cross_entropy(outputs, labels, mini_batch=1, **kwargs):
# 这个loss会先把batch分成小的mini_batch,在mini_batch内做个token-level的平均,然后做所有卡之间的平均
loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
if labels.shape[0] % mini_batch != 0:
# 如果batch % mini_batch != 0, 则不切分计算. 有的数据量一个epoch结束的时候可能会出现这个情况
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1))
else:
loss = loss_fct(
outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1)
).reshape(labels.shape[0] // mini_batch, -1)
labels = labels.reshape(labels.shape[0] // mini_batch, -1)
loss = loss.sum(-1) / (labels != -100).sum(-1)
loss = loss.mean()
return loss
def sample_level_cross_entropy(outputs, labels, **kwargs):
# 先对所有样本字token-level的平均,然后计算所有sample的平均值
loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
loss = loss_fct(
outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1)
).reshape(labels.shape[0], -1)
loss = loss.sum(-1) / (labels != -100).sum(-1)
loss = loss.mean()
return loss
def global_token_level_cross_entropy(outputs, labels, **kwargs):
# 对所有样本一起做token-level的平均
loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
loss = loss_fct(
outputs.logits.contiguous().view(-1, outputs.logits.size(-1)), labels.contiguous().view(-1)
).reshape(labels.shape[0], -1)
num_tokens = (loss != 0).sum()
loss = loss.sum()
num_tokens_tensor = torch.zeros([1], device=loss.device, dtype=loss.dtype)
num_tokens_tensor[0] = num_tokens.item()
torch.distributed.all_reduce(num_tokens_tensor)
global_num_tokens = num_tokens_tensor.sum()
torch.distributed.barrier()
# global_num_tokens是全局的token数,因为在梯度更新的时候回自动对所有卡求mean
# 所有这里要乘一个world_size
loss = loss.sum() / global_num_tokens * torch.distributed.get_world_size()
return loss
LOSS_MAP = {
'local_token_level_cross_entropy': local_token_level_cross_entropy,
'mini_batch_token_level_cross_entropy': mini_batch_token_level_cross_entropy,
'sample_level_cross_entropy': sample_level_cross_entropy,
'global_token_level_cross_entropy': global_token_level_cross_entropy,
"moe_auxiliary": expert_balanced_auxiliary_cross_entropy,
"moe_auxiliary_sft": expert_balanced_auxiliary_cross_entropy_for_sft,
"pretrain_default": cross_entropy_loss,
"moe_auxiliary_global_token_level": expert_balanced_auxiliary_global_level_cross_entropy,
}
class Transpose(nn.Module):
def __init__(self, dim0: int, dim1: int):
super().__init__()
self.dim0 = dim0
self.dim1 = dim1
def forward(self, x):
return x.transpose(self.dim0, self.dim1)
def patch_continuous_features(
input_embeddings: torch.Tensor,
placeholder_loc_lens: torch.Tensor,
encoded_feats: torch.Tensor,
encoded_feat_lens: torch.Tensor,
):
"""
Patch continuous features into input embeddings, while keeping a valid gradient flow.
input_embeddings: torch.Tensor, size = [B, C?, T, D]
placeholder_loc_lens: torch.LongTensor, size = [B, N, 2]
Each 2-tuple represents (start, length) of a placeholder.
encoded_feats: torch.Tensor, size = [B, L1 + L2 + ... + LN, ...]
encoded_feat_lens: torch.LongTensor, size = [B, N]
Example ('X' for patch placeholder tokens):
Inputs:
input_embeddings = [[1, 2, 3, X, X, X, 4, 5, 6, X, X, X, 7, 8]]
placeholder_loc_lens = [[3, 3], [9, 3]]
encoded_feats = [[A, A, A, B, B]]
encoded_feat_lens = [[3, 2]]
Outputs:
embeddings = [[1, 2, 3, A, A, A, 4, 5, 6, B, B, X, 7, 8]]
"""
batch_size = input_embeddings.size(0)
audio_feats_mask = torch.zeros_like(input_embeddings, dtype=torch.bool)
audio_feats_buffer = []
for i in range(batch_size):
sample_len = 0
audio_feat_start = 0
audio_feat_buffer = []
for j in range(placeholder_loc_lens.shape[1]):
placeholder_start: int = int(placeholder_loc_lens[i, j, 0].item())
placeholder_len: int = int(placeholder_loc_lens[i, j, 1].item())
if placeholder_len <= 0:
break
feat_len = int(encoded_feat_lens[i, j].item())
real_feat_len = feat_len
if feat_len > placeholder_len:
# logger.warning(
# f"Feature length ({feat_len}) > placeholder length ({placeholder_len}). This is not expected. Please "
# "check the implementation of estimate_audio_feature_length(). We truncate the feature to avoid errors."
# )
feat_len = placeholder_len
if placeholder_start > sample_len:
audio_feat_buffer.append(input_embeddings.new_zeros((placeholder_start - sample_len, input_embeddings.shape[2])))
sample_len = placeholder_start
audio_feat_buffer.append(encoded_feats[i, audio_feat_start:audio_feat_start + feat_len])
if feat_len < placeholder_len:
audio_feat_buffer.append(encoded_feats.new_zeros(placeholder_len - feat_len))
audio_feats_mask[i, sample_len:sample_len + feat_len] = 1
audio_feat_start += real_feat_len
sample_len += placeholder_len
if sample_len < input_embeddings.shape[1]:
audio_feat_buffer.append(
input_embeddings.new_zeros((input_embeddings.shape[1] - sample_len, input_embeddings.shape[2]))
)
audio_feats_buffer.append(torch.cat(audio_feat_buffer))
audio_feats_buffer = torch.stack(audio_feats_buffer, dim=0)
embeddings = audio_feats_buffer * audio_feats_mask + input_embeddings * ~audio_feats_mask
return embeddings
def unwrap_feats(feats: torch.Tensor, feats_lengths: torch.Tensor):
"""
The input feats are in the "wrapped" format, which means that features from (at most) N audios are concatenated
as a single sample feats[i]. In this case, each row of feats_lengths contains the lengths of the concatenated
feature. This function unwraps the features.
For samples with less than N segments, one should pad feats_lengths with 0. The result will contain valid
segments only.
feats: torch.Tensor, size = [B, L1 + L2 + ... + LN, ...]
feats_lengths: torch.LongTensor, size = [B, N]
Example ('X' for padding):
Inputs:
feats = [[A, A, A, A, X],
[B, B, C, C, C]]
feats_lengths = [[4, 0],
[2, 3]]
Outputs:
feat_segs = [[A, A, A, A],
[B, B, X, X],
[C, C, C, X]]
feat_seg_lengths = [4, 2, 3]
"""
feat_segs = []
feat_seg_lengths = []
for i in range(feats_lengths.shape[0]):
feat_index = 0
for j in range(feats_lengths.shape[1]):
feat_len = feats_lengths[i, j].item()
if feat_len == 0: break
feat_segs.append(feats[i, feat_index:feat_index + feat_len])
feat_seg_lengths.append(feat_len)
feat_index += feat_len
feat_segs_batch = torch.nn.utils.rnn.pad_sequence(feat_segs, True).to(feats.device)
feat_seg_lengths = torch.tensor(feat_seg_lengths, dtype=torch.long, device=feats.device)
return feat_segs_batch, feat_seg_lengths
def wrap_feats(feat_segs: torch.Tensor, feats_lengths: torch.Tensor, feats_seg_lengths: Optional[torch.Tensor] = None):
"""
Wrap segmented features back to the wrapped format.
This function is the inverse operation of unwrap_feats(). See its documentation for details.
Note that the feats_lengths value does not matter a lot. We only check the location of the first 0 to determine the
number of feature segments.
"""
feat_idx = 0
feats_buffer = []
feats_locs_buffer = []
feats_lengths_buffer = []
for i in range(feats_lengths.shape[0]):
feat_buffer = []
feat_locs_buffer = []
feat_lengths_buffer = []
feat_total_len = 0
for j in range(feats_lengths.shape[1]):
feat_len = feats_lengths[i, j].item()
if feat_len == 0:
break
if feats_seg_lengths is not None:
feat_len = feats_seg_lengths[feat_idx].item()
feat_buffer.append(feat_segs[feat_idx, :feat_len])
feat_locs_buffer.append(feat_total_len)
feat_lengths_buffer.append(feat_len)
feat_idx += 1
feat_total_len += feat_len
feats_buffer.append(torch.cat(feat_buffer))
feats_locs_buffer.append(torch.tensor(feat_locs_buffer, dtype=torch.long))
feats_lengths_buffer.append(torch.tensor(feat_lengths_buffer, dtype=torch.long))
feats = torch.nn.utils.rnn.pad_sequence(feats_buffer, True).to(feat_segs.device)
feats_locs = torch.nn.utils.rnn.pad_sequence(feats_locs_buffer, True).to(feats_lengths.device)
feats_new_lengths = torch.nn.utils.rnn.pad_sequence(feats_lengths_buffer, True).to(feats_lengths.device)
return feats, feats_locs, feats_new_lengths
def encode_audio_segments(
encoder,
proj_layer,
wav_feats=None,
wav_feats_lengths=None,
waveforms=None,
waveforms_lengths=None,
use_waveform=False,
audio_config=None,
whisper_config=None,
use_whisper_encoder=False
):
"""
Apply audio encoder to input audio features in wrapped format.
See the documentation of unwrap_feats() for details about 'wrapped format'.
"""
# Forward audio encoder.
if use_waveform:
assert waveforms is not None and waveforms_lengths is not None
# Unwrap the waveforms so each waveform is placed at an independent row.
waveform_segs_batch, waveform_seg_lengths = unwrap_feats(waveforms, waveforms_lengths)
audio_feats_seg, audio_feat_seg_lengths = encoder(waveform_segs_batch, waveform_seg_lengths)[:2]
else:
assert wav_feats is not None and wav_feats_lengths is not None
# Unwrap the features so the feature of each waveform is placed at an independent row.
feat_segs_batch, feat_seg_lengths = unwrap_feats(wav_feats, wav_feats_lengths)
if use_whisper_encoder:
assert isinstance(encoder, AudioEncoder)
assert whisper_config is not None
# for whisper encoder
# feat_segs_batch: [B, T, n_mels]
# feat_seg_lengths: [B]
audio_feats_seg = encoder(feat_segs_batch)
audio_feats_seg_proj = proj_layer(audio_feats_seg.transpose(-1, -2)).transpose(-1, -2)
feat_seg_lengths = feat_seg_lengths.to(feat_segs_batch.device)
# whisper encoder conv
audio_feat_seg_lengths = (feat_seg_lengths - 3 + 2 * 1) // 2 + 1
# project layer conv
audio_feat_seg_lengths = (audio_feat_seg_lengths - whisper_config.ds_kernel_size + 2 *
(whisper_config.ds_kernel_size//2)) // whisper_config.ds_stride + 1
else:
audio_feats_seg, audio_feat_seg_lengths = encoder(feat_segs_batch, feat_seg_lengths)[:2]
audio_feats_seg_proj = proj_layer(audio_feats_seg.transpose(-1, -2)).transpose(-1, -2)
# project layer conv
audio_feat_seg_lengths = (audio_feat_seg_lengths - audio_config.ds_kernel_size + 2 * (
audio_config.ds_kernel_size // 2)) // audio_config.ds_stride + 1
# Wrap the features so the 1st dim represents batch_size.
input_lengths = waveforms_lengths if use_waveform else wav_feats_lengths
assert input_lengths is not None
audio_feats, _, audio_feats_lengths = wrap_feats(audio_feats_seg, input_lengths, audio_feat_seg_lengths)
audio_feats_proj, _, audio_feats_lengths2 = wrap_feats(audio_feats_seg_proj, input_lengths, audio_feat_seg_lengths)
assert torch.all(audio_feats_lengths == audio_feats_lengths2), f"{audio_feats_lengths}, {audio_feats_lengths2}"
return audio_feats_proj, audio_feats, audio_feats_lengths
def patch_continuous_features(
input_embeddings: torch.Tensor,
placeholder_loc_lens: torch.Tensor,
encoded_feats: torch.Tensor,
encoded_feat_lens: torch.Tensor,
):
"""
Patch continuous features into input embeddings, while keeping a valid gradient flow.
input_embeddings: torch.Tensor, size = [B, C?, T, D]
placeholder_loc_lens: torch.LongTensor, size = [B, N, 2]
Each 2-tuple represents (start, length) of a placeholder.
encoded_feats: torch.Tensor, size = [B, L1 + L2 + ... + LN, ...]
encoded_feat_lens: torch.LongTensor, size = [B, N]
Example ('X' for patch placeholder tokens):
Inputs:
input_embeddings = [[1, 2, 3, X, X, X, 4, 5, 6, X, X, X, 7, 8]]
placeholder_loc_lens = [[3, 3], [9, 3]]
encoded_feats = [[A, A, A, B, B]]
encoded_feat_lens = [[3, 2]]
Outputs:
embeddings = [[1, 2, 3, A, A, A, 4, 5, 6, B, B, X, 7, 8]]
"""
batch_size = input_embeddings.size(0)
audio_feats_mask = torch.zeros_like(input_embeddings, dtype=torch.bool)
audio_feats_buffer = []
for i in range(batch_size):
sample_len = 0
audio_feat_start = 0
audio_feat_buffer = []
for j in range(placeholder_loc_lens.shape[1]):
placeholder_start: int = int(placeholder_loc_lens[i, j, 0].item())
placeholder_len: int = int(placeholder_loc_lens[i, j, 1].item())
if placeholder_len <= 0:
break
feat_len = int(encoded_feat_lens[i, j].item())
real_feat_len = feat_len
if feat_len > placeholder_len:
logging.warning(
f"Feature length ({feat_len}) > placeholder length ({placeholder_len}). This is not expected. Please "
"check the implementation of estimate_audio_feature_length(). We truncate the feature to avoid errors."
)
feat_len = placeholder_len
if placeholder_start > sample_len:
audio_feat_buffer.append(input_embeddings.new_zeros((placeholder_start - sample_len, input_embeddings.shape[2])))
sample_len = placeholder_start
audio_feat_buffer.append(encoded_feats[i, audio_feat_start:audio_feat_start + feat_len])
if feat_len < placeholder_len:
audio_feat_buffer.append(encoded_feats.new_zeros(placeholder_len - feat_len))
audio_feats_mask[i, sample_len:sample_len + feat_len] = 1
audio_feat_start += real_feat_len
sample_len += placeholder_len
if sample_len < input_embeddings.shape[1]:
audio_feat_buffer.append(
input_embeddings.new_zeros((input_embeddings.shape[1] - sample_len, input_embeddings.shape[2]))
)
audio_feats_buffer.append(torch.cat(audio_feat_buffer))
audio_feats_buffer = torch.stack(audio_feats_buffer, dim=0)
embeddings = audio_feats_buffer * audio_feats_mask + input_embeddings * ~audio_feats_mask
return embeddings
def build_modality_mask(placeholder_loc_lens: torch.Tensor, shape: torch.Size):
mask = torch.zeros(shape, dtype=torch.bool)
for i in range(placeholder_loc_lens.shape[0]):
for j in range(placeholder_loc_lens.shape[1]):
start: int = int(placeholder_loc_lens[i, j, 0].item())
length: int = int(placeholder_loc_lens[i, j, 1].item())
if length <= 0:
break
mask[i, start:start + length] = True
return mask
|