File size: 17,715 Bytes
e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a dd5f831 e92022a dd5f831 e92022a 81a8221 e92022a 81a8221 e92022a dd5f831 e92022a dd5f831 e92022a dd5f831 e92022a dd5f831 e92022a dd5f831 e92022a 81a8221 e92022a dd5f831 e92022a 81a8221 dd5f831 81a8221 dd5f831 81a8221 e92022a dd5f831 e92022a dd5f831 e92022a dd5f831 e92022a dd5f831 e92022a dd5f831 81a8221 dd5f831 81a8221 e92022a 81a8221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
from dataclasses import dataclass
from typing import Optional, Tuple, List
import os
import yaml
import re
import torch
import torch.nn as nn
import torchaudio
from hyperpyyaml import load_hyperpyyaml
from transformers import Qwen2Config, PreTrainedModel
from transformers import Qwen2ForCausalLM, AutoTokenizer
from audio_detokenizer.cli.model import AudioDetokenizerModel
from s3bpe_tokenizer import S3BpeTokenizer
from configuration_bailing_talker import BailingTalkerConfig
from transformers.utils import ModelOutput
from sentence_manager.sentence_manager import SentenceNormalizer
@dataclass
class BailingTalkerOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[torch.FloatTensor] = None
class BailingTalkerForConditionalGeneration(PreTrainedModel):
config_class = BailingTalkerConfig
base_model_prefix = 'model'
def __init__(self, config:BailingTalkerConfig):
super().__init__(config)
self.config = config
self.vocab_size = self.config.vocab_size
self.tokenizer = AutoTokenizer.from_pretrained(self.config._name_or_path)
self.model_config = Qwen2Config.from_pretrained(self.config._name_or_path)
self.model = Qwen2ForCausalLM(self.model_config)
self.model.resize_token_embeddings(self.vocab_size)
self.thinker_to_talker_proj = nn.Linear(self.config.qa_model_hidden_size, self.model_config.hidden_size)
self.vp_head = nn.Conv1d(
self.config.vp_feature_size,
self.model_config.hidden_size,
kernel_size=self.config.vp_kernel_size,
stride=self.config.vp_stride,
padding=self.config.vp_kernel_size // 2,
)
self.s3bpe_tokenizer = S3BpeTokenizer(bpe_model=f"{self.config._name_or_path}/s3_bpe/tokenizer.json", mapping_file=f"{self.config._name_or_path}/s3_bpe/char_mapping.txt")
self.loss_function = nn.CrossEntropyLoss()
default_config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sentence_manager/default_config.yaml")
self.sentence_manager_config = yaml.safe_load(open(default_config_path))
if "split_token" not in self.sentence_manager_config:
self.sentence_manager_config["split_token"] = []
assert isinstance(self.sentence_manager_config["split_token"], list)
self.sentence_manager_config["split_token"].append(re.escape(self.tokenizer.eos_token))
self.normalizer = SentenceNormalizer(self.sentence_manager_config.get("text_norm", {}))
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def encode_audio_segments(
self,
inputs_embeds: torch.FloatTensor,
vp_emb: torch.FloatTensor,
vp_insert_loc: torch.LongTensor,
thinker_reply_part: Optional[torch.FloatTensor] = None,
thinker_reply_length: Optional[List] = None,
thinker_prefix_insert_loc: Optional[torch.LongTensor] = None
):
vp_emb_encoded = self.vp_head(vp_emb.transpose(-1, -2)).transpose(-1, -2)
for idx in range(vp_insert_loc.shape[0]):
inputs_embeds[idx, vp_insert_loc[idx].item():vp_insert_loc[idx].item() + 1, :] = vp_emb_encoded[idx, :, :]
if thinker_prefix_insert_loc is not None:
thinker_reply_part = self.thinker_to_talker_proj(thinker_reply_part)
for idx in range(thinker_prefix_insert_loc.shape[0]):
real_length = thinker_reply_length[idx]
inputs_embeds[idx, thinker_prefix_insert_loc[idx].item():thinker_prefix_insert_loc[idx].item() + real_length, :] = thinker_reply_part[idx, :real_length, :]
return inputs_embeds
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[dict] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
text_input_ids: Optional[torch.LongTensor] = None,
vp_emb: Optional[torch.FloatTensor] = None,
vp_insert_loc: Optional[torch.LongTensor] = None,
thinker_reply_part: Optional[torch.FloatTensor] = None,
thinker_reply_length: Optional[torch.FloatTensor] = None,
thinker_prefix_insert_loc: Optional[torch.LongTensor] = None,
):
if inputs_embeds is None:
audio_input_embeds = self.model.get_input_embeddings()(input_ids)
text_input_embeds = self.model.get_input_embeddings()(text_input_ids)
inputs_embeds = audio_input_embeds + text_input_embeds
if past_key_values is None:
inputs_embeds = self.encode_audio_segments(
inputs_embeds, vp_emb, vp_insert_loc, thinker_reply_part=thinker_reply_part,
thinker_reply_length=thinker_reply_length, thinker_prefix_insert_loc=thinker_prefix_insert_loc
)
if position_ids is None:
position_ids = (attention_mask.cumsum(-1) - 1).masked_fill_((attention_mask == 0), 1)
outputs = self.model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
loss = self.loss_function(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))
return BailingTalkerOutputWithPast(
loss=loss,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
logits=logits,
)
def sample(self, logits, topk=20, filter_value=-float("Inf"), stopping_criteria=False, eos_id=151666):
logits = logits.reshape(1, -1) # [1, V]
indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None]
indices_to_remove[0][eos_id] = True if stopping_criteria is True else indices_to_remove[0][eos_id]
logits[indices_to_remove] = filter_value
token_id = torch.multinomial(torch.softmax(logits, dim=-1), num_samples=1).to(torch.long)
return token_id
def omni_audio_generation_func(
self,
tts_text,
prompt,
prefix_from_thinker,
vp,
position_ids,
talker_audio_prefix,
vp_insert_loc,
thinker_length,
vp_emb=None,
thinker_reply_part=None,
prompt_text=None,
prompt_speech_token=None,
):
text_input_part = self.tokenizer.encode(tts_text)
prompt_text_input_part = self.tokenizer.encode(prompt_text)
prompt_speech_token = prompt_speech_token[0].tolist()
prompt_speech_token_bpe = self.s3bpe_tokenizer.encode(prompt_speech_token)[0]
prompt_speech_token_bpe = (torch.tensor(prompt_speech_token_bpe) + len(self.tokenizer) ).tolist()
# audio_prefix and text_prefix for first step generation
talker_text_prefix = (
prompt +
prefix_from_thinker +
vp +
prompt_text_input_part[:1]
)
# the rest of input_text
talker_text_input_part = (
prompt_text_input_part[1:] +
text_input_part +
self.tokenizer.encode("<text_eos>") +
self.tokenizer.encode("<text_pad>")
)
talker_text_prefix = torch.tensor(talker_text_prefix).reshape(1, -1).to(self.device)
audio_token = self.generate(
talker_audio_prefix=talker_audio_prefix,
talker_text_prefix=talker_text_prefix,
talker_text_input_part=talker_text_input_part,
position_ids=position_ids,
vp_emb=vp_emb,
vp_insert_loc=vp_insert_loc,
thinker_reply_part=thinker_reply_part,
thinker_reply_length=torch.tensor([thinker_length]).to(self.device),
thinker_prefix_insert_loc=torch.tensor([len(prompt) + 1]).to(self.device) if thinker_reply_part is not None else None,
prompt_wav_token=prompt_speech_token_bpe,
)
audio_token = [ele - len(self.tokenizer) for ele in audio_token]
audio_token = self.s3bpe_tokenizer.decode(audio_token)
audio_token = torch.tensor([audio_token], dtype=torch.int32)
return audio_token
def text_length(self, text):
return len(re.findall("[\u4e00-\u4E27\u4E29-\u4E3E\u4E42-\u9fa4]", text))
def cut_text(self, text, max_length, tail_min_length=5):
def text_append(text_list, text, max_length):
if len(text_list) == 0:
text_list.append(text)
else:
if len(text_list[-1]) + self.text_length(text) <= max_length:
if text_list[-1].endswith("。") and self.text_length(text) < tail_min_length:
text_list.append(text.lstrip(","))
else:
text_list[-1] += text
else:
text_list.append(text.lstrip(","))
return text_list
text = text.replace("\n", " ")
text = self.normalizer.normalize(text)
text = text.replace("。,", "。")
if len(text) <= max_length:
return [text]
text_list = []
text = text.replace(".", "。").replace(",", ",")
sps1 = []
for t in text.split("。"):
t = t.strip()
if len(t) > 0:
if t[-1] not in "!?,。!?,.":
t += "。"
sps1.append(t)
for text_piece1 in sps1:
sps2 = []
for t in text_piece1.split(","):
t = t.strip()
if len(t) > 0:
if t[-1] not in "!?,。!?,.":
t += ","
sps2.append(t)
for text_piece2 in sps2:
text_piece2 = text_piece2.replace("。,", "。")
if self.text_length(text_piece2) > max_length:
for i in range(0, len(text_piece2), max_length):
text_list = text_append(text_list, text_piece2[i:i+max_length], max_length)
else:
text_list = text_append(text_list, text_piece2, max_length)
return text_list
def omni_audio_generation(
self,
tts_text,
vp_emb=None,
thinker_reply_part=None,
max_length=50,
prompt_text=None,
prompt_speech_token=None,
**kwargs,
):
# thinker_reply_part: [B, T, d]
# get text_emb and hidden_states from thinker
thinker_length = thinker_reply_part.size(1) if thinker_reply_part is not None else 0
prefix_from_thinker = (
self.tokenizer.encode("<thinker_prefix>") +
self.tokenizer.encode("<audio_pad>") * thinker_length + # placeholder for prefix emb from thinker
self.tokenizer.encode("</thinker_prefix>")
)
prompt = self.tokenizer.encode("<prompt>") + self.tokenizer.encode("</prompt>")
vp = (
self.tokenizer.encode("<vp>") +
self.tokenizer.encode("<audio_pad>") +
self.tokenizer.encode("</vp>")
)
talker_audio_prefix = (
prompt +
prefix_from_thinker +
vp +
self.tokenizer.encode("<audio_bos>")
)
attention_mask = torch.ones(len(talker_audio_prefix)).reshape(1, -1).to(self.device)
position_ids = (attention_mask.cumsum(-1) - 1).masked_fill_((attention_mask == 0), 1)[:, -1].view(1, -1)
talker_audio_prefix = torch.tensor(talker_audio_prefix).reshape(1, -1).to(self.device)
vp_insert_loc = torch.tensor(len(prompt) + len(prefix_from_thinker) + 1, dtype=torch.long).reshape(1, -1)
vp_emb = vp_emb.unsqueeze(0).to(torch.bfloat16).to(self.device)
assert max_length > 0, f"max_length must be greater than 0, but here is {max_length}"
text_list = self.cut_text(tts_text, max_length)
audio_tokens = []
for text in text_list:
audio_tokens_piece = self.omni_audio_generation_func(
tts_text=text,
prompt=prompt,
prefix_from_thinker=prefix_from_thinker,
vp=vp,
position_ids=position_ids,
talker_audio_prefix=talker_audio_prefix,
vp_insert_loc=vp_insert_loc,
thinker_length=thinker_length,
vp_emb=vp_emb,
thinker_reply_part=thinker_reply_part,
prompt_text=prompt_text,
prompt_speech_token=prompt_speech_token,
)
audio_tokens.append(audio_tokens_piece)
return audio_tokens
@torch.no_grad()
def generate(
self,
talker_audio_prefix: torch.LongTensor,
talker_text_prefix: torch.LongTensor,
talker_text_input_part: List,
position_ids: Optional[torch.LongTensor] = None,
vp_emb: Optional[torch.FloatTensor] = None,
vp_insert_loc: Optional[torch.LongTensor] = None,
thinker_reply_part: Optional[torch.FloatTensor] = None,
thinker_reply_length: Optional[torch.FloatTensor] = None,
thinker_prefix_insert_loc: Optional[torch.LongTensor] = None,
prompt_wav_token: List = [],
min_new_token = 10,
):
result = []
step = 0
eos_id = self.tokenizer.encode("<audio_eos>")[0]
prompt_wav_token_len = len(prompt_wav_token)
while step < 1000:
if step == 0:
talker_audio_input_ids = talker_audio_prefix
talker_text_input_ids = talker_text_prefix
attention_mask = torch.ones(talker_audio_input_ids.shape).to(talker_audio_prefix.device)
else:
talker_audio_input_ids = next_token
talker_text_input_ids = torch.tensor(talker_text_input_part[0], dtype=torch.long).reshape(1, -1).to(
talker_audio_prefix.device)
attention_mask = torch.ones(next_token.shape[0], 1).to(talker_audio_prefix.device)
position_ids += 1
thinker_prefix_insert_loc = None
if len(talker_text_input_part) > 1:
talker_text_input_part = talker_text_input_part[1:]
# print(talker_audio_input_ids, self.tokenizer.decode(talker_text_input_ids.tolist()[0]), attention_mask, position_ids)
outputs = self(
input_ids=talker_audio_input_ids,
text_input_ids=talker_text_input_ids,
thinker_reply_part=thinker_reply_part,
thinker_reply_length=thinker_reply_length,
thinker_prefix_insert_loc=thinker_prefix_insert_loc,
vp_emb=vp_emb,
vp_insert_loc=vp_insert_loc,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=True,
past_key_values=outputs.past_key_values if step > 0 else None
)
# 采样
logits = outputs.logits[:, -1, :]
stopping_criteria = position_ids.item() < prompt_wav_token_len + min_new_token
next_token = self.sample(logits, stopping_criteria=stopping_criteria )
if next_token.item() == eos_id:
break
if len(prompt_wav_token) > 0:
next_token = torch.tensor([[prompt_wav_token[0]]]).to(logits.device)
prompt_wav_token = prompt_wav_token[1:]
else:
result.append(next_token.item())
step += 1
return result
class AudioDetokenizer:
def __init__(self, config_path, flow_model_path, hifigan_model_path):
with open(config_path, 'r') as f:
configs = load_hyperpyyaml(f)
self.model = AudioDetokenizerModel(configs['flow'], configs['hift'])
self.model.load(flow_model_path, hifigan_model_path)
self.sr = 22050
def token2wav(self, audio_tokens, save_path=None, **kwargs):
assert isinstance(audio_tokens, list), f"audio_tokens should be list"
speech_list = []
for audio_token in audio_tokens:
model_input = {"tts_speech_token": audio_token}
kwargs.update(**model_input)
model_output = self.model.inference(**kwargs)
silent_dur = 0.02
silent_tensor = torch.Tensor([0.0] * int(self.sr * silent_dur))
model_output['tts_speech'][0][:int(self.sr * silent_dur)] = silent_tensor
speech_list.append(model_output['tts_speech'])
if len(speech_list) == 1:
speech = speech_list[0]
else:
speech = torch.cat(speech_list, dim=1)
if save_path is not None:
torchaudio.save(save_path, speech, sample_rate=self.sr)
return speech
|