File size: 11,927 Bytes
81a8221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

import torch

import copy
from diffusers import DPMSolverMultistepScheduler
import os
from collections import OrderedDict
import logging
from safetensors.torch import load_file
from diffusers import (
    AutoencoderDC,
    FlowMatchEulerDiscreteScheduler,
    SanaTransformer2DModel
)
import torch.nn as nn
from .pipeline_sana import SanaPipeline
# from flux_encoder import tokenize_prompt, encode_prompt

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class ToClipMLP(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        #self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(input_dim, 2048)
        self.layer_norm1 = nn.LayerNorm(2048)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(2048, output_dim)
        self.layer_norm2 = nn.LayerNorm(output_dim)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.layer_norm1(hidden_states)
        hidden_states = self.relu(hidden_states)
        hidden_states = self.fc2(hidden_states)
        hidden_states = self.layer_norm2(hidden_states)
        return hidden_states

class ToClipMLP(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        #self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(input_dim, 2048)
        self.layer_norm1 = nn.LayerNorm(2048)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(2048, output_dim)
        self.layer_norm2 = nn.LayerNorm(output_dim)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.layer_norm1(hidden_states)
        hidden_states = self.relu(hidden_states)
        hidden_states = self.fc2(hidden_states)
        hidden_states = self.layer_norm2(hidden_states)
        return hidden_states


class SanaModel_withMLP(nn.Module):
    def __init__(self, sana, vision_dim=1152):
        super().__init__()
        self.sana = sana
        self.dtype = torch.bfloat16
        self.mlp = ToClipMLP(vision_dim, 2304)
        # self.mlp_pool = ToClipMLP(vision_dim, 768)
        self.config = self.sana.config
    
    def forward(self, hidden_states,
                    timestep,
                    encoder_hidden_states,
                    return_dict,
                    encoder_attention_mask=None,
                     **kargs):

        encoder_hidden_states = self.mlp(encoder_hidden_states)
        hidden_states = self.sana(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    return_dict=False,
                     **kargs
                )
        return hidden_states

    def enable_gradient_checkpointing(self):
        self.sana.enable_gradient_checkpointing()

def inference_load_denoising_pretrained_weights(
        net, 
        weights_path,
        names=None,
        prefix_to_remove=None,    
    ):
    # state_dict = load_file(weights_path, map_location="cpu")
    state_dict = load_file(weights_path)
    net.load_state_dict(state_dict, strict=False)
    return 


def load_denoising_pretrained_weights(
        net, 
        weights_path,
        names=None,
        prefix_to_remove=None,    
    ):
    state_dict = torch.load(weights_path, map_location="cpu")
    if "model" in state_dict:
        state_dict = state_dict["model"]
    elif "net" in state_dict:
        state_dict = state_dict["net"]

    #if torch.distributed.get_rank() == 0 and names is not None:
    #    embed()

    #torch.distributed.barrier()
    if names is not None:
        selected_state_dict = OrderedDict()
        for ori_name in names:
            name = ori_name[len(prefix_to_remove):] if prefix_to_remove is not None else ori_name
            selected_state_dict[name] = state_dict[ori_name]
    
        state_dict = selected_state_dict

    net.load_state_dict(state_dict, strict=True)
    return 


class SANALoss(torch.nn.Module):
    def __init__(
        self, 
        model_path, scheduler_path, vision_dim=3584, diffusion_type='flow_matching', convert_vpred_to_xpred=True, 
        checkpoint_path=None, 
        # checkpoint_path_withmlp=None, 
        # mlp_checkpoint_path=None, 
        mlp_state_dict=None,
        trainable_params='all', device='cpu', guidance_scale=3.5, revision=None, variant=None, repa_loss=False, mid_layer_idx=10, mid_loss_weight=1.0
    ):
        super(SANALoss, self).__init__()
        self.torch_type = torch.bfloat16
        self.base_model_path = model_path
        self.use_mid_loss = repa_loss
        self.mid_loss_weight = mid_loss_weight
        self.mid_layer_idx = mid_layer_idx
        #self.text_encoder = Gemma2Model.from_pretrained(model_path, subfolder="text_encoder")
        #self.tokenizer = AutoTokenizer.from_pretrained(model_path,subfolder="tokenizer")
        self.scheduler = DPMSolverMultistepScheduler.from_pretrained(model_path, subfolder="scheduler")
        #self.sana_pipeline = SanaPipeline.from_pretrained(model_path, torch_dtype=torch.bfloat16,)

        self.device = torch.device(torch.cuda.current_device())    
        self.scheduler_path = scheduler_path
        self.vae = AutoencoderDC.from_pretrained(
            model_path,
            subfolder="vae",
            revision=revision,
            variant=variant,
        )
        
        # self.vae.to(self.torch_type).to(self.device)
        self.vae.requires_grad_(False)

        self.train_model = SanaTransformer2DModel.from_pretrained(
            model_path, subfolder="transformer", revision=revision, variant=variant
        )

        if checkpoint_path is not None:
            assert os.path.exists(checkpoint_path)
            load_denoising_pretrained_weights(self.train_model, checkpoint_path)
        
        # self.train_model = UNet2DConditionModel_withMLP(self.train_model, vision_dim=vision_dim)

        self.train_model = SanaModel_withMLP(self.train_model, vision_dim=vision_dim)
        # if checkpoint_path_withmlp is not None:
        #     assert os.path.exists(checkpoint_path_withmlp)
        #     load_denoising_pretrained_weights(self.train_model, checkpoint_path_withmlp)
        # elif mlp_checkpoint_path is not None:
        #     assert os.path.exists(mlp_checkpoint_path)
        #     inference_load_denoising_pretrained_weights(self.train_model, mlp_checkpoint_path)
        assert mlp_state_dict is not None
        self.train_model.mlp.load_state_dict(mlp_state_dict, strict=True)

        # 创建处理中间层特征的MLP
        hidden_dim = 2240
        self.mid_layer_mlp = None
        if self.use_mid_loss:
            self.mid_layer_mlp = torch.nn.Sequential(
                torch.nn.Linear(hidden_dim, hidden_dim * 2),
                torch.nn.GELU(),
                torch.nn.Linear(hidden_dim * 2, 32),
                torch.nn.LayerNorm(32)
            )

            # 初始化MLP的权重
            for m in self.mid_layer_mlp.modules():
                if isinstance(m, torch.nn.Linear):
                    # 使用Kaiming初始化权重
                    torch.nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
                    if m.bias is not None:
                        # 将偏置初始化为0
                        torch.nn.init.zeros_(m.bias)

        self.train_model.enable_gradient_checkpointing()
        
        self.set_trainable_params(trainable_params)


        num_parameters_trainable = 0
        num_parameters = 0
        name_parameters_trainable = []
        for n, p in self.train_model.named_parameters():
            num_parameters += p.data.nelement()
            if not p.requires_grad:
                continue  # frozen weights
            name_parameters_trainable.append(n)
            num_parameters_trainable += p.data.nelement()

        self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
                                                        self.scheduler_path, subfolder="scheduler"
                                                    )
        self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)


        # if self.train_model.config.guidance_embeds:
        #     self.guidance = torch.tensor([guidance_scale], device=self.device)
        #     # guidance = guidance.expand(model_input.shape[0])
        # else:
        #     self.guidance = None

        logger.info("Preparation done. Starting training diffusion ...")

    def get_sigmas(self, timesteps, n_dim=4, dtype=torch.float32):
        # sigmas = noise_scheduler_copy.sigmas.to(device=self.device, dtype=dtype)
        sigmas = self.noise_scheduler_copy.sigmas
        schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device=timesteps.device)
        timesteps = timesteps
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < n_dim:
            sigma = sigma.unsqueeze(-1)
        return sigma

    def compute_text_embeddings(self, prompt, text_encoders, tokenizers):
        with torch.no_grad():
            prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt(
                [text_encoders], [tokenizers], prompt, 77
            )
            # prompt_embeds = prompt_embeds.to(local_rank)
            pooled_prompt_embeds = pooled_prompt_embeds.to(local_rank)
            # text_ids = text_ids.to(local_rank)
        return prompt_embeds, pooled_prompt_embeds, text_ids

    def set_trainable_params(self, trainable_params):
        
        self.vae.requires_grad_(False)

        if trainable_params == 'all':
            self.train_model.requires_grad_(True)
        else:
            self.train_model.requires_grad_(False)
            for name, module in self.train_model.named_modules():
                for trainable_param in trainable_params:
                    if trainable_param in name:
                        for params in module.parameters():
                            params.requires_grad = True

        num_parameters_trainable = 0
        num_parameters = 0
        name_parameters_trainable = []
        for n, p in self.train_model.named_parameters():
            num_parameters += p.data.nelement()
            if not p.requires_grad:
                continue  # frozen weights
            name_parameters_trainable.append(n)
            num_parameters_trainable += p.data.nelement()

    def sample(self, encoder_hidden_states, steps=20, cfg=7.0, seed=42, height=512, width=512):
        #self.pipelines = SanaPipeline.from_pretrained(self.base_model_path)#.to(device=self.device)
        self.pipelines = SanaPipeline(vae=self.vae,
                         transformer=self.train_model,
                         text_encoder=None,
                         tokenizer=None,
                         scheduler=self.noise_scheduler,
                         ).to(self.device)
        
        prompt_attention_mask = torch.ones(encoder_hidden_states.shape[:2]).to(self.device)
        negative_attention_mask = torch.ones(encoder_hidden_states.shape[:2]).to(self.device)

        image = self.pipelines(
            prompt_embeds=encoder_hidden_states,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_embeds=encoder_hidden_states*0,
            negative_prompt_attention_mask=negative_attention_mask,
            guidance_scale=cfg,
            generator=torch.manual_seed(seed),
            num_inference_steps=steps,
            device=self.device,
            height=height,
            width=width,
            max_sequence_length=300,
        ).images[0]

        return image