File size: 11,927 Bytes
81a8221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import torch
import copy
from diffusers import DPMSolverMultistepScheduler
import os
from collections import OrderedDict
import logging
from safetensors.torch import load_file
from diffusers import (
AutoencoderDC,
FlowMatchEulerDiscreteScheduler,
SanaTransformer2DModel
)
import torch.nn as nn
from .pipeline_sana import SanaPipeline
# from flux_encoder import tokenize_prompt, encode_prompt
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ToClipMLP(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
#self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(input_dim, 2048)
self.layer_norm1 = nn.LayerNorm(2048)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(2048, output_dim)
self.layer_norm2 = nn.LayerNorm(output_dim)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.relu(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.layer_norm2(hidden_states)
return hidden_states
class ToClipMLP(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
#self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(input_dim, 2048)
self.layer_norm1 = nn.LayerNorm(2048)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(2048, output_dim)
self.layer_norm2 = nn.LayerNorm(output_dim)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.relu(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.layer_norm2(hidden_states)
return hidden_states
class SanaModel_withMLP(nn.Module):
def __init__(self, sana, vision_dim=1152):
super().__init__()
self.sana = sana
self.dtype = torch.bfloat16
self.mlp = ToClipMLP(vision_dim, 2304)
# self.mlp_pool = ToClipMLP(vision_dim, 768)
self.config = self.sana.config
def forward(self, hidden_states,
timestep,
encoder_hidden_states,
return_dict,
encoder_attention_mask=None,
**kargs):
encoder_hidden_states = self.mlp(encoder_hidden_states)
hidden_states = self.sana(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
return_dict=False,
**kargs
)
return hidden_states
def enable_gradient_checkpointing(self):
self.sana.enable_gradient_checkpointing()
def inference_load_denoising_pretrained_weights(
net,
weights_path,
names=None,
prefix_to_remove=None,
):
# state_dict = load_file(weights_path, map_location="cpu")
state_dict = load_file(weights_path)
net.load_state_dict(state_dict, strict=False)
return
def load_denoising_pretrained_weights(
net,
weights_path,
names=None,
prefix_to_remove=None,
):
state_dict = torch.load(weights_path, map_location="cpu")
if "model" in state_dict:
state_dict = state_dict["model"]
elif "net" in state_dict:
state_dict = state_dict["net"]
#if torch.distributed.get_rank() == 0 and names is not None:
# embed()
#torch.distributed.barrier()
if names is not None:
selected_state_dict = OrderedDict()
for ori_name in names:
name = ori_name[len(prefix_to_remove):] if prefix_to_remove is not None else ori_name
selected_state_dict[name] = state_dict[ori_name]
state_dict = selected_state_dict
net.load_state_dict(state_dict, strict=True)
return
class SANALoss(torch.nn.Module):
def __init__(
self,
model_path, scheduler_path, vision_dim=3584, diffusion_type='flow_matching', convert_vpred_to_xpred=True,
checkpoint_path=None,
# checkpoint_path_withmlp=None,
# mlp_checkpoint_path=None,
mlp_state_dict=None,
trainable_params='all', device='cpu', guidance_scale=3.5, revision=None, variant=None, repa_loss=False, mid_layer_idx=10, mid_loss_weight=1.0
):
super(SANALoss, self).__init__()
self.torch_type = torch.bfloat16
self.base_model_path = model_path
self.use_mid_loss = repa_loss
self.mid_loss_weight = mid_loss_weight
self.mid_layer_idx = mid_layer_idx
#self.text_encoder = Gemma2Model.from_pretrained(model_path, subfolder="text_encoder")
#self.tokenizer = AutoTokenizer.from_pretrained(model_path,subfolder="tokenizer")
self.scheduler = DPMSolverMultistepScheduler.from_pretrained(model_path, subfolder="scheduler")
#self.sana_pipeline = SanaPipeline.from_pretrained(model_path, torch_dtype=torch.bfloat16,)
self.device = torch.device(torch.cuda.current_device())
self.scheduler_path = scheduler_path
self.vae = AutoencoderDC.from_pretrained(
model_path,
subfolder="vae",
revision=revision,
variant=variant,
)
# self.vae.to(self.torch_type).to(self.device)
self.vae.requires_grad_(False)
self.train_model = SanaTransformer2DModel.from_pretrained(
model_path, subfolder="transformer", revision=revision, variant=variant
)
if checkpoint_path is not None:
assert os.path.exists(checkpoint_path)
load_denoising_pretrained_weights(self.train_model, checkpoint_path)
# self.train_model = UNet2DConditionModel_withMLP(self.train_model, vision_dim=vision_dim)
self.train_model = SanaModel_withMLP(self.train_model, vision_dim=vision_dim)
# if checkpoint_path_withmlp is not None:
# assert os.path.exists(checkpoint_path_withmlp)
# load_denoising_pretrained_weights(self.train_model, checkpoint_path_withmlp)
# elif mlp_checkpoint_path is not None:
# assert os.path.exists(mlp_checkpoint_path)
# inference_load_denoising_pretrained_weights(self.train_model, mlp_checkpoint_path)
assert mlp_state_dict is not None
self.train_model.mlp.load_state_dict(mlp_state_dict, strict=True)
# 创建处理中间层特征的MLP
hidden_dim = 2240
self.mid_layer_mlp = None
if self.use_mid_loss:
self.mid_layer_mlp = torch.nn.Sequential(
torch.nn.Linear(hidden_dim, hidden_dim * 2),
torch.nn.GELU(),
torch.nn.Linear(hidden_dim * 2, 32),
torch.nn.LayerNorm(32)
)
# 初始化MLP的权重
for m in self.mid_layer_mlp.modules():
if isinstance(m, torch.nn.Linear):
# 使用Kaiming初始化权重
torch.nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
if m.bias is not None:
# 将偏置初始化为0
torch.nn.init.zeros_(m.bias)
self.train_model.enable_gradient_checkpointing()
self.set_trainable_params(trainable_params)
num_parameters_trainable = 0
num_parameters = 0
name_parameters_trainable = []
for n, p in self.train_model.named_parameters():
num_parameters += p.data.nelement()
if not p.requires_grad:
continue # frozen weights
name_parameters_trainable.append(n)
num_parameters_trainable += p.data.nelement()
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
self.scheduler_path, subfolder="scheduler"
)
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
# if self.train_model.config.guidance_embeds:
# self.guidance = torch.tensor([guidance_scale], device=self.device)
# # guidance = guidance.expand(model_input.shape[0])
# else:
# self.guidance = None
logger.info("Preparation done. Starting training diffusion ...")
def get_sigmas(self, timesteps, n_dim=4, dtype=torch.float32):
# sigmas = noise_scheduler_copy.sigmas.to(device=self.device, dtype=dtype)
sigmas = self.noise_scheduler_copy.sigmas
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device=timesteps.device)
timesteps = timesteps
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def compute_text_embeddings(self, prompt, text_encoders, tokenizers):
with torch.no_grad():
prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt(
[text_encoders], [tokenizers], prompt, 77
)
# prompt_embeds = prompt_embeds.to(local_rank)
pooled_prompt_embeds = pooled_prompt_embeds.to(local_rank)
# text_ids = text_ids.to(local_rank)
return prompt_embeds, pooled_prompt_embeds, text_ids
def set_trainable_params(self, trainable_params):
self.vae.requires_grad_(False)
if trainable_params == 'all':
self.train_model.requires_grad_(True)
else:
self.train_model.requires_grad_(False)
for name, module in self.train_model.named_modules():
for trainable_param in trainable_params:
if trainable_param in name:
for params in module.parameters():
params.requires_grad = True
num_parameters_trainable = 0
num_parameters = 0
name_parameters_trainable = []
for n, p in self.train_model.named_parameters():
num_parameters += p.data.nelement()
if not p.requires_grad:
continue # frozen weights
name_parameters_trainable.append(n)
num_parameters_trainable += p.data.nelement()
def sample(self, encoder_hidden_states, steps=20, cfg=7.0, seed=42, height=512, width=512):
#self.pipelines = SanaPipeline.from_pretrained(self.base_model_path)#.to(device=self.device)
self.pipelines = SanaPipeline(vae=self.vae,
transformer=self.train_model,
text_encoder=None,
tokenizer=None,
scheduler=self.noise_scheduler,
).to(self.device)
prompt_attention_mask = torch.ones(encoder_hidden_states.shape[:2]).to(self.device)
negative_attention_mask = torch.ones(encoder_hidden_states.shape[:2]).to(self.device)
image = self.pipelines(
prompt_embeds=encoder_hidden_states,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_embeds=encoder_hidden_states*0,
negative_prompt_attention_mask=negative_attention_mask,
guidance_scale=cfg,
generator=torch.manual_seed(seed),
num_inference_steps=steps,
device=self.device,
height=height,
width=width,
max_sequence_length=300,
).images[0]
return image
|